Testing how developmental pathways can predict evolutionary adaptation to climate change: an Eco-Devo approach.

测试发育途径如何预测对气候变化的进化适应:Eco-Devo 方法。

基本信息

  • 批准号:
    MR/V024744/2
  • 负责人:
  • 金额:
    $ 174.98万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The world's climate is changing at an unprecedented rate, with dire consequences for biodiversity and ecosystems on which we depend for our survival. To have a chance at managing this transition, we urgently need to identify which species are at risk, and what determines their fate. One key route to resilience is to evolve rapidly enough to keep up with climate change. Unfortunately, the factors that govern limits to and potential for rapid adaptation are poorly understood, and consequently we lack actionable tools that allow us to predict which species can adapt, and where they are vulnerable. Plasticity is the ability of individuals to exploit predictive environmental cues in order to optimally match morphology, behaviour, and life cycle events to current or future conditions, for instance between seasons. It is accomplished via developmental cascades that translate cues into coherent trait changes, via sensing mechanisms, hormonal signalling pathways, genetic regulators, and ultimately downstream effector genes. The growing concern is that climate change is making cues less reliable, as well as changing the optimal balance between traits. Under climate change, previously adaptive existing plastic responses are now leading to mismatches between the environment and expressed traits, and unless populations can rapidly evolve new responses, they may face extinction. I have already demonstrated that capacity to evolve is absent in some populations.Progress to understand limits to rapid adaptation, and in particular the role of plasticity, has been hampered by fragmentation across disciplines. While mechanistic biology has made great strides in disentangling the gene networks and developmental pathways by which the genome makes a multicellular organism, the role of the environment has typically been ignored as noise. Worse, most studies have been carried out in artificial lab environments, far from the complexities of the real world where plastic responses evolve and where they could potentially aid climate resilience. On the other hand, predictive models of climate change resilience which guide species vulnerability assessments suffer from limited explanatory power as they ignore important biological mechanisms such as phenotypic plasticity, adaptation, and genetics. Rapid adaptation is particularly poorly integrated into these resilience models, due to lack of high-quality empirical data and analytical methods to integrate different types of data.I have pioneered integrative approaches that bring together developmental, evolutionary, and ecological analytical methods, and have set up tropical butterflies as a powerful model to implement this agenda. Excitingly, new analytical methods in DNA sequencing, genetics, and statistics now hold the promise to connect previously disparate fields. My multidisciplinary research places me in a unique position to exploit these new technological developments, and realise adaptive capacity as a common currency between mechanistic and conservation biology. Specifically, is genetic variation at key regulatory hubs of developmental pathways that regulate trait expression. Importantly, developing this common currency will enable new tools to predict evolutionary responses to climate change from field-collected DNA samples and climate data. A FLF would provide me with the opportunity to deliver on this transformative research agenda, and establish me as a leader in the field of Eco-Devo and climate change biology.
世界气候正在以前所未有的速度变化,给我们赖以生存的生物多样性和生态系统带来了可怕的后果。为了有机会控制这种转变,我们迫切需要确定哪些物种处于危险之中,以及是什么决定了它们的命运。恢复力的一个关键途径是进化得足够快,以跟上气候变化。不幸的是,控制快速适应的限制和潜力的因素知之甚少,因此我们缺乏可操作的工具,使我们能够预测哪些物种能够适应,以及它们在哪里容易受到伤害。可塑性是指个体利用可预测的环境线索,将形态、行为和生命周期事件与当前或未来的条件(例如季节之间)进行最佳匹配的能力。它是通过发育级联反应完成的,将线索转化为一致的性状变化,通过传感机制、激素信号通路、遗传调节因子和最终的下游效应基因。越来越多的人担心,气候变化正在使线索变得不那么可靠,同时也改变了特征之间的最佳平衡。在气候变化的背景下,先前适应性的现有塑料反应现在导致环境和表达特征之间的不匹配,除非种群能够迅速进化出新的反应,否则它们可能面临灭绝。我已经证明了在一些种群中进化的能力是缺失的。在理解快速适应的局限性,特别是可塑性的作用方面取得的进展,一直受到学科分裂的阻碍。虽然机械生物学在解开基因网络和基因组形成多细胞生物的发育途径方面取得了巨大进展,但环境的作用通常被忽视为噪音。更糟糕的是,大多数研究都是在人工实验室环境中进行的,远离现实世界的复杂性,在现实世界中,塑料反应的演变以及它们可能有助于气候适应能力。另一方面,指导物种脆弱性评估的气候变化恢复力预测模型由于忽略了表型可塑性、适应性和遗传学等重要的生物学机制,解释力有限。由于缺乏高质量的经验数据和整合不同类型数据的分析方法,快速适应在这些复原力模型中的整合尤其差。我开创了综合方法,将发育、进化和生态分析方法结合在一起,并将热带蝴蝶作为实施这一议程的有力模型。令人兴奋的是,DNA测序、遗传学和统计学方面的新分析方法现在有望将以前完全不同的领域联系起来。我的多学科研究使我处于一个独特的位置,可以利用这些新技术的发展,并实现适应能力作为机械生物学和保护生物学之间的共同货币。具体来说,是发育途径中调控性状表达的关键调控中心的遗传变异。重要的是,开发这种共同货币将使新的工具能够从实地收集的DNA样本和气候数据中预测对气候变化的进化反应。FLF将为我提供实现这一变革性研究议程的机会,并使我成为生态发展和气候变化生物学领域的领导者。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Larval growth rate affects wing shape more than eyespot size in the seasonally polyphenic butterfly Melanitis leda
在季节性多酚蝴蝶 Melanitis leda 中,幼虫生长速度对翅膀形状的影响大于对眼斑大小的影响
  • DOI:
    10.1101/2023.12.11.571078
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Molleman F
  • 通讯作者:
    Molleman F
Digest: Habitat seasonality drives evolutionary change in plasticity in Bicyclus butterflies
摘要:栖息地季节性驱动双环蝴蝶可塑性的进化变化
  • DOI:
    10.1093/evolut/qpad106
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Van Bergen E
  • 通讯作者:
    Van Bergen E
Does the definition of a novel environment affect the ability to detect cryptic genetic variation?
  • DOI:
    10.1111/jeb.14238
  • 发表时间:
    2023-10-28
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Riley,Camille L.;Oostra,Vicencio;Plaistow,Stewart J.
  • 通讯作者:
    Plaistow,Stewart J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vicencio Oostra其他文献

Estimation of the Warfarin Dose
华法林剂量的估计
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vicencio Oostra;M. Saastamoinen;B. Zwaan;C. Wheat
  • 通讯作者:
    C. Wheat
On the power to detect rare recombination events
论检测罕见重组事件的能力
Implications of deforestation for the abundance of restricted-range bird species in a Costa Rican cloud-forest
森林砍伐对哥斯达黎加云林中限制范围鸟类丰富的影响
  • DOI:
    10.1017/s0959270908000038
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vicencio Oostra;L. Gomes;V. Nijman
  • 通讯作者:
    V. Nijman
Hormonal and transcriptional mechanisms underlying developmental plasticity of life histories in a seasonal butterfly
季节性蝴蝶生命史发育可塑性的激素和转录机制
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vicencio Oostra
  • 通讯作者:
    Vicencio Oostra
Adaptive developmental plasticity: Compartmentalized responses to environmental cues and to corresponding internal signals provide phenotypic flexibility
适应性发育可塑性:对环境线索和相应内部信号的划分反应提供了表型灵活性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    A. R. Mateus;Manuel Marques;Vicencio Oostra;E. Lafuente;P. Brakefield;B. Zwaan;P. Beldade
  • 通讯作者:
    P. Beldade

Vicencio Oostra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vicencio Oostra', 18)}}的其他基金

Testing how developmental pathways can predict evolutionary adaptation to climate change: an Eco-Devo approach.
测试发育途径如何预测对气候变化的进化适应:Eco-Devo 方法。
  • 批准号:
    MR/V024744/1
  • 财政年份:
    2022
  • 资助金额:
    $ 174.98万
  • 项目类别:
    Fellowship

相似海外基金

Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
  • 批准号:
    10722452
  • 财政年份:
    2023
  • 资助金额:
    $ 174.98万
  • 项目类别:
Understanding how social interactions influence reward-seeking behaviors: Developmental mechanisms
了解社交互动如何影响寻求奖励的行为:发展机制
  • 批准号:
    10716898
  • 财政年份:
    2023
  • 资助金额:
    $ 174.98万
  • 项目类别:
How to escape from boredom: developmental and neurophysiological mechanisms
如何摆脱无聊:发育和神经生理机制
  • 批准号:
    23K17635
  • 财政年份:
    2023
  • 资助金额:
    $ 174.98万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
How Visuospatial Memory Shapes Perception of Real-World Environments
视觉空间记忆如何塑造对现实世界环境的感知
  • 批准号:
    10659330
  • 财政年份:
    2023
  • 资助金额:
    $ 174.98万
  • 项目类别:
Interdisciplinary approaches for understanding how arsenic and micronutrients affect the epigenome to influence spina bifida risk
了解砷和微量营养素如何影响表观基因组以影响脊柱裂风险的跨学科方法
  • 批准号:
    10560333
  • 财政年份:
    2023
  • 资助金额:
    $ 174.98万
  • 项目类别:
Understanding how enhancer chromatin transduces extracellular signalling during developmental transitions in human pluripotent cells
了解增强子染色质如何在人类多能细胞发育转变过程中转导细胞外信号传导
  • 批准号:
    MR/Y000595/1
  • 财政年份:
    2023
  • 资助金额:
    $ 174.98万
  • 项目类别:
    Research Grant
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
  • 批准号:
    10735074
  • 财政年份:
    2023
  • 资助金额:
    $ 174.98万
  • 项目类别:
3/4 The Autism Sequencing Consortium: Discovering autism risk genes and how they impact core features of the disorder
3/4 自闭症测序联盟:发现自闭症风险基因以及它们如何影响该疾病的核心特征
  • 批准号:
    10420099
  • 财政年份:
    2022
  • 资助金额:
    $ 174.98万
  • 项目类别:
Multisensory integration at the cell, circuit, and behavioral levels: How audiovisual signals drive dynamic courtship behavior in Drosophila melanogaster
细胞、回路和行为层面的多感觉整合:视听信号如何驱动果蝇的动态求偶行为
  • 批准号:
    10389197
  • 财政年份:
    2022
  • 资助金额:
    $ 174.98万
  • 项目类别:
Multisensory integration at the cell, circuit, and behavioral levels: How audiovisual signals drive dynamic courtship behavior in Drosophila melanogaster
细胞、回路和行为层面的多感觉整合:视听信号如何驱动果蝇的动态求偶行为
  • 批准号:
    10828249
  • 财政年份:
    2022
  • 资助金额:
    $ 174.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了