Nitrogen under Extreme Conditions: From Fundamental Physics to Novel Functional Materials

极端条件下的氮:从基础物理到新型功能材料

基本信息

  • 批准号:
    MR/V025724/1
  • 负责人:
  • 金额:
    $ 156.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The technological developments seen in the last 400 years largely rest on incremental increases of the understanding of the fundamental behaviour of matter, in turn exploited to enable the formation of breakthrough functional materials. In our modern day societies, two of the most important class of materials are high energy density and superhard solids. High energy density materials (HEDMs) are employed as mining explosives-with hundreds of millions of tons annually used to extract essential minerals from the Earth-and as rocket fuel. They are the subject of intense research to find higher performance and non-polluting alternatives. On the other hand, superhard materials represent a growing multibillion international market and are indispensable for a wide range of applications, from machining tools to medical prosthetics, passing through aerospace, optics and even jewellery. While diamond is considered the sovereign superhard material, it low abrasiveness and chemical stability makes it inadequate for a number of applications for which an alternative must be found.The remarkable characteristics of nitrogen make it the ideal element for new breakthrough HEDMs and superhard materials. Indeed, covalent nitrogen-nitrogen single bonds are the most energetic bonds among all elements, storing and releasing close to ten times more energy than the current best HEDMs. Nitrogen HEDMs are entirely eco-friendly. At the same time, nitrogen covalent bonds are also ultra-stiff, enabling the formation of superhard solids. While the exceptional potential of nitrogen for technological materials has been known for decades, classical approaches have proven inadequate in producing attractive nitrogen-rich compounds. In recent years, a new parameter for material synthesis has established itself as a top contender for achieving the sought-after nitrogen-based industrial materials: pressure. Indeed, compression to millions of times the atmospheric pressure radically changes the behaviour of matter and favours new and exotic atomic arrangements that are predominantly inaccessible otherwise, such as the greatly desirable high energy and ultra-stiff nitrogen covalent bonds.This research project aims at exploiting the high pressure approach to harness the tremendous potential of nitrogen to produce new technological materials. As a crucial first step, the physico-chemical forces governing the high pressure behaviour of molecular nitrogen (N2) will be experimentally investigated. Then, in a collaborative effort with theorists, a new theoretical framework will be elaborated to address the shortcomings of first-principles predictions and significantly increase their accuracy-essential for engineering novel nitrogen-based functional materials. In a second step, the most promising nitrogen binary systems for forming high energy density as well as superhard solids will be experimentally studied. All pressure-produced compounds will be characterized to determine their exact nature and properties, as well as to establish their potential use as industrial materials. This work can only be successfully achieved by exploiting a recently developed technique: synchrotron single-crystal X-ray diffraction from polycrystalline samples (SC-XRDp). This research project will take place at the Centre for Science at Extreme Conditions (CSEC) of the University of Edinburgh-a world-renowned institution in the field of high pressure sciences with the necessary tools and expertise required for the successful realization of this research project.The pressure parameter promises to be key to finally unravel the full potential of nitrogen. Exploiting a novel experimental method, the boundaries of our understanding of matter under extreme conditions will be pushed further back than ever before; ushering a new era for the design of novel functional materials. The discovered solids will undoubtedly play a pivotal role in the upcoming decades' technological breakthroughts.
过去400年的技术发展在很大程度上依赖于对物质基本行为的理解的逐步增加,反过来又被用来形成突破性的功能材料。在我们的现代社会中,最重要的两类材料是高能量密度和超硬固体。高能量密度材料(HEDM)被用作采矿炸药--每年有数亿吨用于从地球上提取基本矿物--以及火箭燃料。它们是密集研究的对象,以寻找更高性能和无污染的替代方案。另一方面,超硬材料代表着一个不断增长的数十亿美元的国际市场,对于从机械加工工具到医疗假肢、航空航天、光学甚至珠宝等广泛应用来说,都是不可或缺的。虽然钻石被认为是至高无上的超硬材料,但它的低磨损性和化学稳定性使其不适合许多必须找到替代品的应用。氮的显著特性使其成为新突破的HEDM和超硬材料的理想元素。事实上,共价氮氮单键是所有元素中能量最高的键,储存和释放的能量是目前最好的HEDM的近十倍。氮气HEDM是完全环保的。同时,氮的共价键也是超硬的,可以形成超硬固体。虽然氮作为技术材料的特殊潜力几十年来就已为人所知,但事实证明,经典方法在生产有吸引力的富含氮化合物方面是不够的。近年来,材料合成的一个新参数已经确立为实现备受欢迎的氮基工业材料的最大竞争者:压力。事实上,压缩到数百万倍的大气压从根本上改变了物质的行为,有利于以其他方式主要无法获得的新的和奇异的原子排列,例如非常理想的高能和超硬的氮共价键。这项研究项目旨在利用高压方法来利用氮的巨大潜力来生产新的技术材料。作为关键的第一步,将对控制分子氮(N2)高压行为的物理化学力进行实验研究。然后,在与理论家的合作中,将制定一个新的理论框架,以解决第一性原理预测的缺陷,并显著提高其准确性--这对设计新型氮基功能材料至关重要。在第二步中,将对最有希望形成高能量密度和超硬固体的氮二元体系进行实验研究。将对所有加压生产的化合物进行表征,以确定它们的确切性质和特性,并确定它们作为工业材料的潜在用途。这项工作只有通过利用最近发展起来的一项技术才能成功地实现:多晶样品的同步单晶X射线衍射(SC-XRDp)。这项研究项目将在爱丁堡大学极端条件科学中心(CSEC)进行。爱丁堡大学是世界著名的高压科学机构,拥有成功实现这项研究项目所需的必要工具和专业知识。压力参数有望成为最终揭示氮气全部潜力的关键。利用一种新的实验方法,我们对极端条件下物质的理解将比以往任何时候都要向前推进;开创了新型功能材料设计的新纪元。所发现的固体无疑将在未来几十年的技术突破中发挥关键作用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-pressure reactions between the pnictogens: the rediscovery of BiN.
pnictogens之间的高压反应:bin的重新发现。
  • DOI:
    10.3389/fchem.2023.1257942
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
  • 通讯作者:
Stabilization Of The CN 3 5- Anion In Recoverable High-pressure Ln 3 O 2 (CN 3 ) (Ln=La, Eu, Gd, Tb, Ho, Yb) Oxoguanidinates
可回收高压Ln 3 O 2 (CN 3 ) (Ln=La、Eu、Gd、Tb、Ho、Yb)氧代胍盐中CN 3 5-阴离子的稳定化
  • DOI:
    10.1002/ange.202311516
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aslandukov A
  • 通讯作者:
    Aslandukov A
Anionic N 18 Macrocycles and a Polynitrogen Double Helix in Novel Yttrium Polynitrides YN 6 and Y 2 N 11 at 100 GPa
100 GPa 下新型聚氮化钇 YN 6 和 Y 2 N 11 中的阴离子 N 18 大环化合物和多氮双螺旋
  • DOI:
    10.1002/ange.202207469
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aslandukov A
  • 通讯作者:
    Aslandukov A
High-pressure synthesis of dysprosium carbides.
  • DOI:
    10.3389/fchem.2023.1210081
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
  • 通讯作者:
Aromatic hexazine [N6]4- anion featured in the complex structure of the high-pressure potassium nitrogen compound K9N56
  • DOI:
    10.1038/s41557-023-01148-7
  • 发表时间:
    2023-03-06
  • 期刊:
  • 影响因子:
    21.8
  • 作者:
    Laniel, Dominique;Trybel, Florian;Dubrovinskaia, Natalia
  • 通讯作者:
    Dubrovinskaia, Natalia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dominique Laniel其他文献

Narrowing band gap chemically and physically: conductive dense hydrocarbon
化学和物理上的窄带隙:导电致密烃
  • DOI:
    10.1038/s43246-025-00814-2
  • 发表时间:
    2025-05-15
  • 期刊:
  • 影响因子:
    9.600
  • 作者:
    Takeshi Nakagawa;Caoshun Zhang;Kejun Bu;Philip Dalladay-Simpson;Martina Vrankić;Sarah Bolton;Dominique Laniel;Dong Wang;Akun Liang;Hirofumi Ishii;Nozomu Hiraoka;Gaston Garbarino;Angelika D. Rosa;Qingyang Hu;Xujie Lü;Ho-kwang Mao;Yang Ding
  • 通讯作者:
    Yang Ding
Structure determination of ζ-N2 from single-crystal X-ray diffraction and theoretical suggestion for the formation of amorphous nitrogen
从单晶 X 射线衍射确定 ζ-N2 的结构以及对非晶态氮形成的理论建议
  • DOI:
    10.1038/s41467-023-41968-2
  • 发表时间:
    2023-10-05
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Dominique Laniel;Florian Trybel;Andrey Aslandukov;James Spender;Umbertoluca Ranieri;Timofey Fedotenko;Konstantin Glazyrin;Eleanor Lawrence Bright;Stella Chariton;Vitali B. Prakapenka;Igor A. Abrikosov;Leonid Dubrovinsky;Natalia Dubrovinskaia
  • 通讯作者:
    Natalia Dubrovinskaia
Diffusion-driven transient hydrogenation in metal superhydrides at extreme conditions
极端条件下金属超氢化物中扩散驱动的瞬态氢化
  • DOI:
    10.1038/s41467-025-56033-3
  • 发表时间:
    2025-01-29
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Yishan Zhou;Yunhua Fu;Meng Yang;Israel Osmond;Rajesh Jana;Takeshi Nakagawa;Owen Moulding;Jonathan Buhot;Sven Friedemann;Dominique Laniel;Thomas Meier
  • 通讯作者:
    Thomas Meier

Dominique Laniel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

体硅下薄膜(TUB,Thinfilm Under Bulk)复合结构成型机理及其高性能器件研究
  • 批准号:
    61674160
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Femtosecond X-Ray Diffraction Studies of Crystalline Matter Deforming under Extreme Loading
极端载荷下晶体物质变形的飞秒 X 射线衍射研究
  • 批准号:
    EP/X031624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 156.06万
  • 项目类别:
    Research Grant
Advancing understanding of interannual variability and extreme events in the thermal structure of large lakes under historical and future climate scenarios
增进对历史和未来气候情景下大型湖泊热结构的年际变化和极端事件的了解
  • 批准号:
    2319044
  • 财政年份:
    2024
  • 资助金额:
    $ 156.06万
  • 项目类别:
    Standard Grant
New biocatalysts for selective chemical oxidations under extreme conditions
用于极端条件下选择性化学氧化的新型生物催化剂
  • 批准号:
    DP240101500
  • 财政年份:
    2024
  • 资助金额:
    $ 156.06万
  • 项目类别:
    Discovery Projects
Thermophysical Property Analysers for Materials under Extreme Environments
极端环境下材料热物性分析仪
  • 批准号:
    LE240100130
  • 财政年份:
    2024
  • 资助金额:
    $ 156.06万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
In-situ nanomechanical testing for materials under extreme environments
极端环境下材料的原位纳米力学测试
  • 批准号:
    LE240100049
  • 财政年份:
    2024
  • 资助金额:
    $ 156.06万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Simulating UNder ice Shelf Extreme Topography (SUNSET)
模拟冰架下极端地形(日落)
  • 批准号:
    NE/X013782/1
  • 财政年份:
    2023
  • 资助金额:
    $ 156.06万
  • 项目类别:
    Research Grant
Interpretable Machine Learning Modelling of Future Extreme Floods under Climate Change
气候变化下未来极端洪水的可解释机器学习模型
  • 批准号:
    2889015
  • 财政年份:
    2023
  • 资助金额:
    $ 156.06万
  • 项目类别:
    Studentship
PFI-RP: A Smart Food Distribution System for Allocating Scarce Resources Under Extreme Events
PFI-RP:极端事件下分配稀缺资源的智能食品分配系统
  • 批准号:
    2234598
  • 财政年份:
    2023
  • 资助金额:
    $ 156.06万
  • 项目类别:
    Standard Grant
Understanding interactions between minerals and small biopolymers under extreme conditions
了解极端条件下矿物质和小型生物聚合物之间的相互作用
  • 批准号:
    2870997
  • 财政年份:
    2023
  • 资助金额:
    $ 156.06万
  • 项目类别:
    Studentship
Degradation mechanisms of structural composites under extreme weather
极端天气下结构复合材料的降解机制
  • 批准号:
    DP230101152
  • 财政年份:
    2023
  • 资助金额:
    $ 156.06万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了