Deep Learning for CAR-T cell therapy optimisation
用于 CAR-T 细胞治疗优化的深度学习
基本信息
- 批准号:MR/W003309/1
- 负责人:
- 金额:$ 18.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Adoptive cell therapy is a treatment of patients using their own, modified immune cells. It involves harvesting T cells - the immune cells that normally recognise and eliminate pathogens - from the patients blood, reprogramming them to recognise cancer cells and re-introducing the newly modified cells back into the patient to destroy tumours. The modifying factor used to arm these T cells against cancer is called Chimeric Antigen Receptor or CAR, in short. Using the lock and key analogy, just as every lock can only be opened with the appropriate key, each type of cancer, with its unique antigens, can only be recognised by a specific engineered CAR.Currently, the NHS is providing CAR-T cell therapy against malignant B cells that express antigen called CD19 to children and young adults with relapsed or difficult- to-treat leukaemia and lymphoma. The treatment is particularly effective in patients who did not respond to chemotherapy, offering real hope to those who otherwise would have no other options. However, this CAR therapy can only treat a very specific type of cancer, leaving much room for improvement.The concerted efforts into development of specific CAR therapies against other cancers are hindered by the tedious process of target discovery and receptor optimisation. Coding.bio streamlined the process of building better receptors, making it faster, cheaper, and more diverse. This project will develop a deep learning method to select lead candidates from big datasets of these receptors, making candidates more likely to succeed in the clinicOur objective is to help bring this transformative therapy to a wider patient population.
免疫细胞疗法是一种使用患者自身的修饰免疫细胞的治疗方法。它涉及从患者血液中收获T细胞-通常识别和消除病原体的免疫细胞,重新编程它们以识别癌细胞,并将新修饰的细胞重新引入患者体内以摧毁肿瘤。用于武装这些T细胞对抗癌症的修饰因子被称为嵌合抗原受体或CAR。使用锁和钥匙的类比,就像每把锁只能用合适的钥匙打开一样,每种类型的癌症都有其独特的抗原,只能被特定的工程CAR识别。目前,NHS正在为患有复发或难以治疗的白血病和淋巴瘤的儿童和年轻人提供针对恶性B细胞的CAR-T细胞疗法,这些细胞表达称为CD 19的抗原。这种治疗方法对化疗无效的患者特别有效,为那些没有其他选择的患者提供了真实的希望。然而,这种CAR疗法只能治疗非常特定类型的癌症,还有很大的改进空间。针对其他癌症的特异性CAR疗法的开发受到靶点发现和受体优化的繁琐过程的阻碍。Coding.bio简化了构建更好受体的过程,使其更快,更便宜,更多样化。该项目将开发一种深度学习方法,从这些受体的大数据集中选择主要候选人,使候选人更有可能在临床上取得成功。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Lees其他文献
Jonathan Lees的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Lees', 18)}}的其他基金
Deep Learning for CAR-T cell therapy optimisation
用于 CAR-T 细胞治疗优化的深度学习
- 批准号:
MR/W003309/2 - 财政年份:2022
- 资助金额:
$ 18.89万 - 项目类别:
Research Grant
CEDAR: Lower-Upper Atmosphere Coupling via Acoustic Wave Energy
CEDAR:通过声波能进行上下大气耦合
- 批准号:
1551999 - 财政年份:2016
- 资助金额:
$ 18.89万 - 项目类别:
Continuing Grant
Collaborative Research: CDI-Type II: VolcanoSRI: 4D Volcano Tomography in a Large-Scale Sensor Network
合作研究:CDI-Type II:VolcanoSRI:大规模传感器网络中的 4D 火山断层扫描
- 批准号:
1125185 - 财政年份:2011
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Volcano Geodesy and Seismology: Earthquakes at Silicic Domes
合作研究:综合火山大地测量学和地震学:硅质穹顶的地震
- 批准号:
0838395 - 财政年份:2009
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant
Collaborative Research: Near-Field Volcano Infrasound: Three-dimensional Seismo-Acoustic Wave Propagation
合作研究:近场火山次声波:三维地震声波传播
- 批准号:
0738768 - 财政年份:2008
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant
Detection of Magma Chamber at Mt. Fuji, Japan
日本富士山岩浆房的探测
- 批准号:
0440054 - 财政年份:2005
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant
Seismo-Acoustic Dynamics of Silicic Dome Eruptions
硅质穹顶喷发的地震声动力学
- 批准号:
0337462 - 财政年份:2004
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant
Workshop: NASCAR, Northern Andes Subduction of the Carnegie Ridge, Chapel Hill, North Carolina
研讨会:NASCAR,卡内基岭北安第斯山脉俯冲,教堂山,北卡罗来纳州
- 批准号:
0221443 - 财政年份:2002
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant
SEKS: Side Edge of Kamchatka Subduction
SEKS:堪察加俯冲带的侧边缘
- 批准号:
9614639 - 财政年份:1997
- 资助金额:
$ 18.89万 - 项目类别:
Continuing Grant
Acquisition of Geographic Information System (GIS) Software and Hardware
地理信息系统(GIS)软件和硬件的采购
- 批准号:
9304456 - 财政年份:1993
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
- 批准号:
2314075 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Continuing Grant
Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
- 批准号:
2337176 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Continuing Grant
CAREER: Closing the Loop between Learning and Communication for Assistive Robot Arms
职业:关闭辅助机器人手臂的学习和交流之间的循环
- 批准号:
2337884 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Continuing Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant