Investigating coupling of metabolism with gene transcription to support the axonal regeneration programme for repair
研究代谢与基因转录的耦合以支持轴突再生程序的修复
基本信息
- 批准号:MR/X003663/1
- 负责人:
- 金额:$ 104.36万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Spinal cord injury (SCI) is a cause of permanent severe disability in 350,000 people in the US and 60,000 in the UK alone. While neurorehabilitation approaches have made important advances, no treatment is available to significantly improve the many neurological impairments spanning from sensory, motor, cardiovascular, urinary and sexual dysfunction. Following SCI, functional recovery fails due to the inability of central nervous system (CNS) axons to regenerate and re-establish lost circuits. Conversely, peripheral nervous system (PNS) axons are able to partially regenerate and reinnervate their targets such as after a compression of the sciatic nerve for example. A direct comparison of the mechanisms underpinning this opposite ability can lead to identify new targets for regeneration after SCI. Recent studies in my laboratory comparing this opposite regenerative ability led to the discovery of a metabolic pathway called Pentose Phosphate Pathway (PPP) that promotes regeneration and repair after SCI. The PPP uses sugar (glucose) to produce NADPH that is important to reduce free radicals and ribose-5-phosphate (R5P), needed for nucleoside biosynthesis. This pathway does not use energy in the form of ATP to generate its products and it is therefore ideally suited in a post-injury state where damaged neurons have an extreme need for new metabolites with a low energy demand. However, nothing is known about the role of the PPP in axonal regeneration and plasticity after injury. Initial experiments in my lab showed that while PPP production of NADPH does not affect regenerative growth, PPP-dependent R5P and downstream ribonucleoside production are needed for DRG neurite outgrowth. Importantly, my lab found that overexpressing the PPP enzyme transketolase strongly increases neurite outgrowth in cultured DRG neurons and it promotes axonal regeneration after a spinal cord injury in vivo. Altogether, this led us to hypothesise that boosting the PPP could promote axonal regeneration and repair after SCI by increasing the availability of nucleotides that are the elements needed for a transcriptional regenerative response. This proposal aims to provide evidence for the regenerative potential of the PPP after SCI and to unravel the molecular mechanisms underpinning this ability. Lastly, it will leverage upon the PPP-dependent regenerative response to propose treatment after SCI in order to promote locomotor and sensory recovery in a clinically suitable delivery modality of nucleosides with translational potential. The specific aims will investigate: (1) the ability of transketolase overexpression to promote regeneration and synaptic plasticity after SCI; (2) the molecular mechanisms linking PPP activation with transcription for regenerative gene expression; (3) in vivo ribonucleosides delivery as a treatment to increase plasticity, regeneration and recovery post-SCI in mouse models of spinal cord injuries. This research project will shed a completely new light on the regenerative response to injury by providing an alternative view of the metabolic control of the axonal regenerative ability by investigating PPP-dependent repair mechanisms that will also offer novel translational opportunities.
脊髓损伤(SCI)是导致美国35万人和英国6万人永久严重残疾的原因。虽然神经康复方法取得了重要进展,但没有治疗方法可以显著改善许多神经功能障碍,包括感觉,运动,心血管,泌尿和性功能障碍。SCI后,由于中枢神经系统(CNS)轴突无法再生和重建丢失的回路,功能恢复失败。相反,外周神经系统(PNS)轴突能够部分再生并重新支配其靶,例如在坐骨神经受压后。直接比较支撑这种相反能力的机制可以识别SCI后再生的新靶点。我实验室最近的研究比较了这种相反的再生能力,发现了一种叫做戊糖磷酸途径(PPP)的代谢途径,它可以促进SCI后的再生和修复。PPP使用糖(葡萄糖)来产生NADPH,这对于减少核苷生物合成所需的自由基和核糖-5-磷酸(R5 P)很重要。这种途径不使用ATP形式的能量来产生其产物,因此非常适合损伤后的状态,其中受损的神经元对能量需求低的新代谢物有极端的需求。然而,关于PPP在损伤后轴突再生和可塑性中的作用还不清楚。我实验室的初步实验表明,虽然NADPH的PPP生产不影响再生生长,但DRG神经突生长需要PPP依赖的R5 P和下游核糖核苷生产。重要的是,我的实验室发现,过表达PPP酶转酮醇酶强烈增加了培养的DRG神经元中的轴突生长,并促进体内脊髓损伤后的轴突再生。总之,这使我们假设,通过增加核苷酸的可用性,提高PPP可以促进SCI后的轴突再生和修复,这些核苷酸是转录再生反应所需的元素。这项提议旨在为SCI后PPP的再生潜力提供证据,并揭示支持这种能力的分子机制。最后,它将利用PPP依赖的再生反应提出SCI后的治疗,以促进运动和感觉恢复,在临床上合适的具有翻译潜力的核苷的递送方式。具体目标将研究:(1)转酮醇酶过表达促进SCI后再生和突触可塑性的能力;(2)连接PPP激活与再生基因表达转录的分子机制;(3)在脊髓损伤小鼠模型中,体内核糖核苷递送作为增加SCI后可塑性、再生和恢复的治疗。该研究项目将通过研究PPP依赖的修复机制提供轴突再生能力的代谢控制的另一种观点,从而为损伤的再生反应提供全新的见解,这也将提供新的翻译机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simone Di Giovanni其他文献
The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration
脊髓损伤中的翻译景观:聚焦神经可塑性和再生
- DOI:
10.1038/s41582-019-0280-3 - 发表时间:
2019-11-14 - 期刊:
- 影响因子:33.100
- 作者:
Thomas H. Hutson;Simone Di Giovanni - 通讯作者:
Simone Di Giovanni
An Analog Bootstrapped Biosignal Read-Out Circuit With Common-Mode Impedance Two-Electrode Compensation
具有共模阻抗两电极补偿的模拟自举生物信号读出电路
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:4.3
- 作者:
F. R. Parente;Simone Di Giovanni;G. Ferri;V. Stornelli;G. Pennazza;M. Santonico - 通讯作者:
M. Santonico
Three-dimensional chromatin mapping of sensory neurons reveals that cohesin-dependent genomic domains are required for axonal regeneration
感觉神经元的三维染色质图谱揭示了轴突再生需要依赖于粘连蛋白的基因组结构域
- DOI:
10.1101/2024.06.09.597974 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ilaria Palmisano;Tong Liu;W. Gao;Luming Zhou;Matthias Merkenschlager;Franziska Müller;Jessica S. Chadwick;Rebecca Toscano Rivolta;G. Kong;James WD King;Ediem Al;Yuyang Yan;Alessandro Carlino;Bryce Collison;Eleonora De Vitis;Sree Gongala;Francesco De Virgiliis;Zheng Wang;Simone Di Giovanni - 通讯作者:
Simone Di Giovanni
Clonally expanded, targetable, natural killer-like NKG7 T cells seed the aged spinal cord to disrupt myeloid-dependent wound healing
克隆性扩增、可靶向的、自然杀伤样的 NKG7 T 细胞定植于衰老的脊髓,破坏髓样细胞依赖的伤口愈合。
- DOI:
10.1016/j.neuron.2024.12.012 - 发表时间:
2025-03-05 - 期刊:
- 影响因子:15.000
- 作者:
Guiping Kong;Yayue Song;Yuyang Yan;Samantha M. Calderazzo;Madhu Sudhana Saddala;Fabian De Labastida Rivera;Jonathan D. Cherry;Noah Eckman;Eric A. Appel;Adam Velenosi;Vivek Swarup;Riki Kawaguchi;Susanna S. Ng;Brian K. Kwon;David Gate;Christian R. Engwerda;Luming Zhou;Simone Di Giovanni - 通讯作者:
Simone Di Giovanni
p53-dependent pathways in neurite outgrowth and axonal regeneration
- DOI:
10.1007/s00441-011-1292-5 - 发表时间:
2012-01-22 - 期刊:
- 影响因子:2.900
- 作者:
Simone Di Giovanni;Khizr Rathore - 通讯作者:
Khizr Rathore
Simone Di Giovanni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simone Di Giovanni', 18)}}的其他基金
Technology-driven combinatorial therapy to rewire the spinal cord after injury (ReWire)
技术驱动的组合疗法可在损伤后重新连接脊髓 (ReWire)
- 批准号:
EP/X030946/1 - 财政年份:2023
- 资助金额:
$ 104.36万 - 项目类别:
Research Grant
Regulation of 3D genome organisation and function in axonal regeneration
轴突再生中 3D 基因组组织和功能的调节
- 批准号:
MR/T003111/1 - 财政年份:2019
- 资助金额:
$ 104.36万 - 项目类别:
Research Grant
Environmental enrichment-dependent neuronal activity pathways for axonal regeneration and recovery after spinal cord injury
脊髓损伤后轴突再生和恢复的环境富集依赖性神经元活动途径
- 批准号:
MR/R005311/1 - 财政年份:2018
- 资助金额:
$ 104.36万 - 项目类别:
Research Grant
相似国自然基金
KLK10调控胶质—血管耦合与对话促缺血性卒中后血脑屏障修复的机制
- 批准号:82371465
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于外泌体TRPV4-Nox4 coupling途径探讨缺氧微环境调控鼻咽癌转移侵袭和血管新生的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:省市级项目
内质网、线粒体、细胞核互作网络与钙离子调控机制研究
- 批准号:92054105
- 批准年份:2020
- 资助金额:80.0 万元
- 项目类别:重大研究计划
基于p32-GCS1复合物的线粒体-内质网互作体系鉴定与功能研究
- 批准号:92054106
- 批准年份:2020
- 资助金额:83.0 万元
- 项目类别:重大研究计划
PKM2调控脂滴与线粒体互作机制及生理功能研究
- 批准号:92054107
- 批准年份:2020
- 资助金额:83.0 万元
- 项目类别:重大研究计划
基于功能蛋白质组学的线粒体相关内质网膜内源动态蛋白互作网络研究
- 批准号:91954103
- 批准年份:2019
- 资助金额:74.0 万元
- 项目类别:重大研究计划
棕色脂肪细胞脂滴线粒体互作的建立及维持机制研究
- 批准号:91954108
- 批准年份:2019
- 资助金额:79.0 万元
- 项目类别:重大研究计划
CRAC钙通道的功能及调控机制探究
- 批准号:91954205
- 批准年份:2019
- 资助金额:291.0 万元
- 项目类别:重大研究计划
新型二茂铁基四咪唑类大环配体的合成、表征及其金属配合物在非均相C-C偶联反应中的应用研究
- 批准号:21102132
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
一类新型可调的手性膦配体的合成及其在不对称Suzuki-Miyaura反应中的应用
- 批准号:20972196
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
Methylation of mRNA as a coupling mechanism between diet, metabolism and the circadian clock.
mRNA 甲基化作为饮食、新陈代谢和生物钟之间的耦合机制。
- 批准号:
MR/Y003896/1 - 财政年份:2024
- 资助金额:
$ 104.36万 - 项目类别:
Fellowship
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
- 批准号:
10557547 - 财政年份:2023
- 资助金额:
$ 104.36万 - 项目类别:
Using Photobiomodulation to Alleviate Brain Hypoperfusion in Alzheimer's Disease
利用光生物调节缓解阿尔茨海默氏病的大脑灌注不足
- 批准号:
10656787 - 财政年份:2023
- 资助金额:
$ 104.36万 - 项目类别:
Regulation of erythroid iron metabolism by the CLPX unfoldase
CLPX 解折叠酶对红细胞铁代谢的调节
- 批准号:
10716494 - 财政年份:2023
- 资助金额:
$ 104.36万 - 项目类别:
CD38 modulation of NAD metabolism driving scleroderma pathogenesis
CD38 调节 NAD 代谢驱动硬皮病发病机制
- 批准号:
10733929 - 财政年份:2023
- 资助金额:
$ 104.36万 - 项目类别:
Glomerular and Tubular Function in the Recovering Kidney
肾脏恢复中的肾小球和肾小管功能
- 批准号:
10587898 - 财政年份:2023
- 资助金额:
$ 104.36万 - 项目类别:
A mechanism of lipid accumulation in brown adipose tissue
棕色脂肪组织中脂质积累的机制
- 批准号:
10605981 - 财政年份:2023
- 资助金额:
$ 104.36万 - 项目类别:
2023 Muscle: Excitation-Contraction Coupling Gordon Research Conference and Gordon Research Seminar
2023肌肉:兴奋-收缩耦合戈登研究会议暨戈登研究研讨会
- 批准号:
10606049 - 财政年份:2023
- 资助金额:
$ 104.36万 - 项目类别:
Regulation of KRAS plasma membrane targeting by defined glycosphingolipids.
通过特定的鞘糖脂调节 KRAS 质膜靶向。
- 批准号:
10718459 - 财政年份:2023
- 资助金额:
$ 104.36万 - 项目类别:
Energizing and Protecting Axons Through Metabolic Coupling to Schwann Cells
通过与雪旺细胞的代谢耦合来激活和保护轴突
- 批准号:
10647707 - 财政年份:2023
- 资助金额:
$ 104.36万 - 项目类别: