MICA: Single cell phenotyping platform to genetically engineer megakaryocytes to upscale platelet production for transfusion purposes
MICA:单细胞表型平台,对巨核细胞进行基因改造,以提高输血用血小板产量
基本信息
- 批准号:MR/X004716/1
- 负责人:
- 金额:$ 55.37万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Each year 250,000 platelets units are transfused to patients in the UK. Platelets are the smallest of the blood cells and primarily promote blood clotting. Platelet transfusions represent a crucial tool in the therapeutic armament for patients who are either actively bleeding (following trauma or surgery) or for patients with a severely reduced platelet count (thrombocytopenia) as a result of genetic disorders or malignancies and the (often) myelosuppressive treatment thereof. We are totally reliant on blood donors to generate platelets which creates a range of issues. Platelets have a short shelf life, between 5-7 days (as opposed to 35 days for red blood cell units), making supply management platelet complicated in instances when there are acute changes to donor availability such as national holidays, natural disasters and pandemics. In addition, multi-transfused patients or women who have had multiple children can become immunised against non-self (HLA Class I antigens), necessitating the sourcing of HLA matched platelets (15% of the UK out in platelets) requiring the recall of specifically typed donors. Finally, any mis-matched blood component exposes the recipient to the risk of transfusion-transmitted infection with bacteria (platelets unlike other blood products have to be kept at room temperature) and viruses necessitating strict donor selection and microbiological screening programs that have to be constantly adapted to emerging new infectious agents such as recently for the Zika virus. Developing countries with unstable infrastructure, lack of centralised standardisation and screening and endemic infectious agents, have the highest rates of viral transmission through transfusions. Most of these issues may be addressed by the generation of platelets in vitro addressing issues of supply, microbiological safety and allo-immunogenicity (using for example genome edited universal cells). Unfortunately, current protocols to generate platelets in vitro are 10-100 orders of magnitude below what we see in vivo. We believe that this is because our cultures of megakaryocytes (the mother cell of platelets) offer a diverse range in levels of maturity, with the vast majority of these cells not ready to start making platelets. Our aim is to identify key genomic elements that will allow us to guide our cultures to full maturation in a synchronised manner, giving us the best opportunity to up-scale out platelet production.We will achieve this by identifying mouse megakaryocytes as terminally mature i.e. platelet producing, using the fact that they produce long arm like projections, called proplatelets, as a visual cue from non-terminally mature (no proplatelets). Genetic material from these two populations of cells will be isolated and sequenced so that a genetic landscape can by prepared. Comparison of these two lines will allow us to identify differentially expressed factors that control the rate of transcription of genetic material (transcription factors). We will then be able to genetically engineer human stem cells with these transcription factors, to analyse whether they have an effect on MK production, terminal maturation and platelet production.
在英国,每年有25万个血小板单位被输注给患者。血小板是最小的血细胞,主要促进血液凝固。血小板输注是治疗活动性出血(创伤或手术后)患者或因遗传性疾病或恶性肿瘤及其(通常)骨髓抑制治疗导致血小板计数严重降低(血小板减少症)患者的关键工具。 我们完全依赖献血者来产生血小板,这带来了一系列问题。血小板的保存期很短,在5-7天之间(而红细胞单位为35天),这使得在国家假日、自然灾害和流行病等供体供应发生急剧变化的情况下,血小板的供应管理变得复杂。此外,多次输血的患者或有多个孩子的妇女可能会对非自身(HLA I类抗原)产生免疫力,因此需要采购HLA匹配的血小板(15%的英国血小板),需要召回特定类型的供体。最后,任何不匹配的血液成分都会使接受者面临输血传播细菌感染的风险(血小板与其他血液制品不同,必须保持在室温下)和病毒,需要严格的供体选择和微生物筛查程序,这些程序必须不断适应新出现的新传染病,例如最近的寨卡病毒。基础设施不稳定、缺乏集中标准化和筛查以及地方性传染病病原体的发展中国家,通过输血传播病毒的比率最高。这些问题中的大多数可以通过体外生成血小板来解决,解决供应、微生物安全性和同种异体免疫原性的问题(使用例如基因组编辑的通用细胞)。不幸的是,目前体外生成血小板的方案比我们在体内看到的低10-100个数量级。我们认为这是因为我们的巨核细胞(血小板的母细胞)培养物提供了不同的成熟水平,其中绝大多数细胞还没有准备好开始制造血小板。我们的目标是确定关键的基因组元件,使我们能够以同步的方式引导我们的培养物完全成熟,为我们提供扩大血小板生产的最佳机会。我们将通过鉴定小鼠巨核细胞为终末成熟即血小板生产来实现这一目标,利用它们产生长臂样突起的事实,称为前血小板,作为非终末成熟(无前血小板)的视觉线索。来自这两个细胞群体的遗传物质将被分离和测序,以便可以准备遗传景观。比较这两条线将使我们能够识别差异表达的因子,控制遗传物质的转录速率(转录因子)。然后,我们将能够用这些转录因子对人类干细胞进行基因工程改造,以分析它们是否对MK生产,终末成熟和血小板生产产生影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Holly Rebecca Foster其他文献
Holly Rebecca Foster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Single Cell RNA-seq的斑马鱼神经干细胞不对称分裂调控机制研究
- 批准号:31601181
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
甲醇合成汽油工艺中烯烃催化聚合过程的单元步骤(single event)微动力学理论研究
- 批准号:21306143
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
From single-cell transcriptomic to single-cell fluxomic: characterising metabolic dysregulations for breast cancer subtype classification
从单细胞转录组到单细胞通量组:表征乳腺癌亚型分类的代谢失调
- 批准号:
EP/Y001613/1 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Research Grant
CAREER: Elucidating spatial and epigenetic regulation of gene expression during human development using photopatterning and single-cell multiomics
职业:利用光模式和单细胞多组学阐明人类发育过程中基因表达的空间和表观遗传调控
- 批准号:
2339849 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Continuing Grant
SCAnDi: Single-cell and single molecule analysis for DNA identification
SCAnDi:用于 DNA 鉴定的单细胞和单分子分析
- 批准号:
ES/Y010655/1 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Research Grant
Understanding the coordination of DNA mismatch repair using live-cell single-molecule imaging
使用活细胞单分子成像了解 DNA 错配修复的协调
- 批准号:
BB/Y001567/1 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Research Grant
Single-cell metabolite imaging of the coral-microalgal symbiosis
珊瑚-微藻共生的单细胞代谢物成像
- 批准号:
DE240100317 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Discovery Early Career Researcher Award
Developing Algorithms for Identifying Gene Modules in Single-Cell RNA-Seq Using Signed Graphs
开发使用符号图识别单细胞 RNA-Seq 中基因模块的算法
- 批准号:
24K18100 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unravelling the meiotic single-cell transcriptomic atlas for the control of recombination.
揭示减数分裂单细胞转录组图谱以控制重组。
- 批准号:
BB/Y001591/1 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Research Grant
Probing the mechano-biology of cell-cell adhesion in a novel single cell assay
在新型单细胞测定中探讨细胞间粘附的力学生物学
- 批准号:
EP/Y002245/1 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Research Grant
配偶子致死遺伝子による染色体切断作用解明に向けたsingle-cell RNA-seq
单细胞 RNA-seq 阐明配子致死基因的染色体切断效应
- 批准号:
24K17877 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
DryBrain: single cell-resolution molecular mechanisms ensuring tolerance of insect nervous system to complete desiccation
DryBrain:单细胞分辨率分子机制确保昆虫神经系统对完全干燥的耐受性
- 批准号:
23K26919 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)