MICA: Development of Boron Doped Diamond Based Transcutaneous Blood Gas Sensors for Improved Patient Ventilation Status Monitoring and Control
MICA:开发基于掺硼金刚石的经皮血气传感器,以改善患者通气状态监测和控制
基本信息
- 批准号:MR/X004945/1
- 负责人:
- 金额:$ 39.24万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Dissolved oxygen and carbon dioxide blood gas levels in the body are key indicators of respiratory health status and thus represent an important diagnostic test for illness severity. This information is essential to enabling correct diagnosis and treatment of the patients' needs. However, if only infrequent monitoring of the respiratory gases is possible then life threatening changes go unnoticed which can lead to the patient suffering severe complications such as organ impairment and brain damage. The ability to continuously monitor thus provides considerable clinical advantages to the patient in both the efficacy of their treatment and long term prognosis for recovery. Continuous monitoring is even more important for the health-outcomes of the 300,000 patients treated each year in critical care, including the 70,000 critical care babies. The Covid-19 pandemic, which resulted in patients with severe respiratory distress has also further highlighted the need for continuous respiratory gas monitoring.The current standard approach on hospital wards is to use the blood gas analyser. This is an stand-alone instrument which requires blood removal from the patient and placement of the blood in the instrument. The number of blood gas analysers per hospital is limited (due to cost), use requires trained staff and patient infection is possible when removing blood samples as a result of breaking the skin barrier. The number available and its mode of operation precludes real time measurement of patient ventilation status. This method whilst being non-ideal is particularly problematic in critical care or neonatal settings where the rapidly changing physiology of the patient, difficult to access blood vessels, small accessible blood volumes, and heightened distress caused by pain and blood loss complicate measurements. The infrequent nature of the measurement also precludes fast reactive treatment.The aim of this work is to move away from periodic sampling and move towards on-skin transcutaneous sensors, to provide real time and continuous blood gas monitoring of the respiratory gases, without the need to withdraw blood from the patient. The sensors aim to offer responsive and continuous measurement of patient ventilation status, importantly with minimal input required from clinical staff for long term operation, non-invasively. Whilst transcutaneous sensors for carbon dioxide and oxygen exist their uptake into hospitals has been limited due to the below-expectation performance properties of the sensors. Current sensors use two different electrode materials which sense the two different respiratory gases by different measurements methods. The sensor responses, in practise, drift with time, this necessitates frequent removal of the sensors from the body, taking apart and reconstructing the sensor, recalibrating by flowing gas over the sensor, and then replacing on the patient. This results in many periods of no measurement, it is time consuming for clinical staff and requires the staff to have undergone the appropriate training.We aim to address these issues by using a sensor material and measurement protocols which allow us to tackle the problems which currently hamper current transcutaneous sensors. The project builds upon the world leading achievements of the research team in the field of electrochemical sensing and associated measurement methodologies. The electrode material is essential to sensor stability, reproducibility and robustness. For this reason we will use functionalised boron doped diamond, which can be produced at a competitive cost and can detect both respiratory gases in one measurement. The measurement method adopted, also provides a solution to the sensor drift problem. Using only one measurement electrode we also aim to reduce the spatial footprint of the sensor. Beyond hospital care, the sensors offer benefits in, for example, sport and sleep science, and condition management and diagnostics in the community.
体内溶解氧和二氧化碳血气水平是呼吸系统健康状况的关键指标,因此是疾病严重程度的重要诊断测试。这些信息对于正确诊断和治疗患者的需要至关重要。然而,如果只能对呼吸气体进行不频繁的监测,那么危及生命的变化就会被忽视,从而导致患者遭受严重的并发症,如器官损伤和脑损伤。因此,持续监测的能力在治疗效果和长期康复预后方面为患者提供了相当大的临床优势。对每年接受重症监护治疗的30万名患者(包括7万名重症监护婴儿)的健康结果进行持续监测更为重要。Covid-19大流行导致患者出现严重呼吸窘迫,这也进一步凸显了持续监测呼吸气体的必要性。目前医院病房的标准方法是使用血气分析仪。这是一种独立的仪器,需要从患者身上取出血液并将血液放入仪器中。每家医院的血气分析仪数量有限(由于成本),使用需要训练有素的工作人员,并且由于打破皮肤屏障,在提取血液样本时可能会感染患者。可用的数量及其操作模式妨碍了对患者通气状态的实时测量。这种方法虽然不理想,但在重症监护或新生儿环境中尤其存在问题,因为患者的生理变化迅速,难以进入血管,可获得的血容量小,疼痛和失血引起的痛苦加剧,使测量复杂化。测量的不频繁性也妨碍了快速反应处理。这项工作的目的是摆脱周期性采样,转向皮肤上的经皮传感器,提供实时和连续的呼吸气体血气监测,而无需从患者身上抽血。传感器旨在提供响应性和连续的患者通气状态测量,重要的是,临床工作人员对长期手术的投入最少,无创。虽然存在经皮二氧化碳和氧气传感器,但由于传感器的性能低于预期,医院对它们的吸收受到限制。电流传感器使用两种不同的电极材料,通过不同的测量方法来感知两种不同的呼吸气体。传感器的反应,在实践中,随时间漂移,这就需要频繁地从身体上移除传感器,拆开并重建传感器,通过流过传感器的气体重新校准,然后在病人身上更换。这导致在许多时期没有测量,这是耗时的临床工作人员,并要求工作人员进行适当的培训。我们的目标是通过使用传感器材料和测量协议来解决这些问题,这使我们能够解决目前阻碍当前经皮传感器的问题。该项目建立在电化学传感和相关测量方法领域研究团队的世界领先成就的基础上。电极材料对传感器的稳定性、可重复性和鲁棒性至关重要。出于这个原因,我们将使用功能化硼掺杂金刚石,它可以以具有竞争力的成本生产,并且可以在一次测量中检测两种呼吸气体。采用的测量方法,也为传感器漂移问题提供了一种解决方案。仅使用一个测量电极,我们还旨在减少传感器的空间占用。除了医院护理之外,传感器还在运动和睡眠科学、社区状况管理和诊断等方面提供益处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julie MacPherson其他文献
Julie MacPherson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julie MacPherson', 18)}}的其他基金
Biofilm Activity Analyser for Healthcare Applications
适用于医疗保健应用的生物膜活性分析仪
- 批准号:
BB/P004156/1 - 财政年份:2016
- 资助金额:
$ 39.24万 - 项目类别:
Research Grant
Electrochemical Properties and Applications of Isolated Single Walled Carbon Nanotubes (SWNTs)
孤立的单壁碳纳米管(SWNT)的电化学性质和应用
- 批准号:
EP/D000165/1 - 财政年份:2006
- 资助金额:
$ 39.24万 - 项目类别:
Research Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Development of boron complexes exhibiting near-infrared solid-state fluorescence
具有近红外固态荧光的硼配合物的开发
- 批准号:
23K04873 - 财政年份:2023
- 资助金额:
$ 39.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Strongly Lewis Acidic and Nucleophilic Boron Reagents and Its Catalytic Reactions
强路易斯酸性亲核硼试剂的研制及其催化反应
- 批准号:
23K06048 - 财政年份:2023
- 资助金额:
$ 39.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Materials Development Based on the Assenbly of Boron Vacant Orbitals
基于硼空位轨道组装的材料开发
- 批准号:
23H01945 - 财政年份:2023
- 资助金额:
$ 39.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a new neutron ambient dose equivalent rate monitor suitable for accelerator-based boron neutron capture therapy
开发适用于基于加速器的硼中子俘获疗法的新型中子环境剂量当量率监测器
- 批准号:
23H03762 - 财政年份:2023
- 资助金额:
$ 39.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
I-Corps: Scalable Development of Multifunctional Hexagonal Boron Nitride Protective Coatings
I-Corps:多功能六方氮化硼防护涂层的可扩展开发
- 批准号:
2325675 - 财政年份:2023
- 资助金额:
$ 39.24万 - 项目类别:
Standard Grant
Development of a novel multifunctional nanoliposome-based system for maintaining active agent concentration in tumor tissue during boron-neutron capture therapy
开发一种新型多功能纳米脂质体系统,用于在硼中子捕获治疗期间维持肿瘤组织中的活性剂浓度
- 批准号:
23K06738 - 财政年份:2023
- 资助金额:
$ 39.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of graphene and boron nitrate-based polymeric systems for electrical applications
开发用于电气应用的石墨烯和硝酸硼基聚合物系统
- 批准号:
RGPIN-2019-05791 - 财政年份:2022
- 资助金额:
$ 39.24万 - 项目类别:
Discovery Grants Program - Individual
Development of the Direct Observation Method of Boron-dose Distribution for QA in BNCT
BNCT QA 硼剂量分布直接观测方法的发展
- 批准号:
22K07697 - 财政年份:2022
- 资助金额:
$ 39.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of novel boron-containing electron transport materials with alkynylborane skeleton
新型炔基硼烷骨架含硼电子传输材料的研制
- 批准号:
22K05074 - 财政年份:2022
- 资助金额:
$ 39.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of boron-based inhibitors of the mitochondrial ClpXP protease to combat AML
开发基于硼的线粒体 ClpXP 蛋白酶抑制剂来对抗 AML
- 批准号:
472460 - 财政年份:2022
- 资助金额:
$ 39.24万 - 项目类别:
Operating Grants