Virtual Clinical Trial Emulation with Generative AI Models
使用生成式 AI 模型进行虚拟临床试验仿真
基本信息
- 批准号:MR/X005925/1
- 负责人:
- 金额:$ 14.28万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research will apply newly emerging generative AI technology to transform biomedical and health research by enabling virtual clinical trial emulation with synthetic data. It will overcome key limitations in both Randomised Controlled Trials (RCTs) and observational studies. RCTs have long been considered as the "gold standard" to evaluate treatments and medicines. However, they are far from being able to answer all clinical questions. In addition to time and cost constraints, RCTs have significant limitations to generalise their findings as their scope is limited. In many situations conducting RCTs with real patients is logistically challenging or unethical due to their potentially harmful nature. This leaves a significant knowledge gap, for example, we still have very limited clinical guidelines about how to manage multi-morbidities. While observational studies can overcome the issues faced by RCTs by leveraging routinely collected data from real world, they are typically imbalanced across population, diseases and interventions; there are a significant amount of noise and missing measurements in the data, and we need lengthy time and significant effort to remove patient identifiable information from the data to protect privacy. More importantly, treatment choices and outcomes in real world clinical cases may depend on factors that are not measured within the data, which may invalidate the observational study. AI research has made great advances in creating new data. With new generative AI models, we can generate synthetic patient populations that faithfully preserve the statistical attributes of real populations. Compared with anonymised real data, synthetic data can be generated in unlimited volume while containing "zero" information about real individuals. Hence, they are in a much better position to overcome legal barriers in data protection and sharing. More importantly, experiments with synthetic data will allow clinical researchers to perform "virtual-trials" to gain quantitative insight into causal relations between treatment and its effect. This will enable prediction and comparison of hypothetical treatments to seek answers to important research questions that currently cannot be answered in real trials. The success of this adventurous and timely research will bring a landscape change to revolutionise future biomedical and health research by broadening its research agenda, liberating its restrictions, saving cost and time, leading to significant benefits to healthcare by speeding up new timelines for treatment discovery, addressing increasingly complex healthcare landscape in elderly population and multi-morbidity, and transforming regulatory and policy making process.
这项研究将应用新兴的生成AI技术,通过使用合成数据实现虚拟临床试验仿真来改变生物医学和健康研究。它将克服随机对照试验(RCT)和观察性研究的关键局限性。长期以来,RCT被认为是评价治疗和药物的“金标准”。然而,他们还远远不能回答所有的临床问题。除了时间和成本的限制,随机对照试验有显着的局限性,以概括他们的研究结果,因为他们的范围是有限的。在许多情况下,对真实的患者进行随机对照试验在逻辑上具有挑战性,或者由于其潜在的有害性质而不道德。这留下了一个重大的知识缺口,例如,我们仍然有非常有限的临床指南,关于如何管理多种疾病。虽然观察性研究可以通过利用从真实的世界中常规收集的数据来克服RCT所面临的问题,但它们通常在人群、疾病和干预措施之间不平衡;数据中存在大量噪音和缺失测量,我们需要漫长的时间和大量的努力来从数据中删除患者可识别的信息以保护隐私。更重要的是,真实的世界临床病例中的治疗选择和结局可能取决于数据中未测量的因素,这可能使观察性研究无效。人工智能研究在创建新数据方面取得了巨大进展。通过新的生成式AI模型,我们可以生成忠实保留真实的人群统计属性的合成患者人群。与匿名化的真实的数据相比,合成数据可以无限量地生成,同时包含关于真实的个体的“零”信息。因此,他们更有能力克服数据保护和共享方面的法律的障碍。更重要的是,使用合成数据的实验将允许临床研究人员进行“虚拟试验”,以获得对治疗及其效果之间因果关系的定量洞察。这将使预测和比较假设的治疗,以寻求答案的重要研究问题,目前无法回答在真实的试验。这项大胆而及时的研究的成功将带来一个景观变化,通过扩大其研究议程,解放其限制,节省成本和时间,通过加快治疗发现的新时间表,解决老年人口和多种疾病日益复杂的医疗保健景观,并改变监管和政策制定过程,从而为医疗保健带来重大利益,从而彻底改变未来的生物医学和健康研究。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Generative Adversarial Dag Learning with No-Curl
使用 No-Curl 的高效生成对抗性 Dag 学习
- DOI:10.2139/ssrn.4331205
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Petkov H
- 通讯作者:Petkov H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feng Dong其他文献
Mechanically-induced enhancement and modulation of upconversion photoluminescence by bending lanthanide doped perovskite oxides
通过弯曲镧系元素掺杂钙钛矿氧化物机械诱导增强和调制上转换光致发光
- DOI:
10.1364/ol.448137 - 发表时间:
2022 - 期刊:
- 影响因子:3.6
- 作者:
Feng Dong;Haisheng Chen;Zhengang Dong;Xiaona Du;Wenwen Chen;Mingqun Qi;Jiaying Shen;Yongtao Yang;Tianhong Zhou;Zhenping Wu;Yang Zhang - 通讯作者:
Yang Zhang
DNA Extraction and Construction of a Metagenomic Fosmid Library of Alpine Meadow Soil from the Mila Mountains in Tibet, China*
中国西藏米拉山高寒草甸土壤 DNA 提取及宏基因组 Fosmid 文库构建*
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Luo Xiaofei;Zhao Zhixiang;Xie Bingyan;Yang Yuhong;Feng Dong - 通讯作者:
Feng Dong
Phase transition in a two-dimensional Ising ferromagnet based on the generalized zero-temperature Glauber dynamics
基于广义零温格劳伯动力学的二维伊辛铁磁体的相变
- DOI:
10.1088/1674-1056/22/12/127501 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Meng Qingkuan;Feng Dong;Gao Xu;Mei Yu - 通讯作者:
Mei Yu
The Regional Carbon Emission Performance Analysis in Jiangsu Province Based on Environment Production Technology
基于环境生产技术的江苏省区域碳排放绩效分析
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Feng Dong;Ruyin Long;Xiaohui Li;Xiaoyan Liu - 通讯作者:
Xiaoyan Liu
Flow state monitoring of gas-water two-phase flow using multi-Gaussian mixture model based on canonical variate analysis
基于正则变量分析的多高斯混合模型气水两相流流动状态监测
- DOI:
10.1016/j.flowmeasinst.2021.101904 - 发表时间:
2021-03 - 期刊:
- 影响因子:2.2
- 作者:
Feng Dong;Wentao Wu;Shumei Zhang - 通讯作者:
Shumei Zhang
Feng Dong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feng Dong', 18)}}的其他基金
Causal Counterfactual visualisation for human causal decision making - A case study in healthcare
人类因果决策的因果反事实可视化 - 医疗保健领域的案例研究
- 批准号:
EP/X029778/1 - 财政年份:2023
- 资助金额:
$ 14.28万 - 项目类别:
Research Grant
MyLifeHub: An interoperability hub for aggregating lifelogging data from heterogeneous sensors and its applications in ophthalmic care
MyLifeHub:一个互操作性中心,用于聚合来自异构传感器的生活记录数据及其在眼科护理中的应用
- 批准号:
EP/L023830/1 - 财政年份:2014
- 资助金额:
$ 14.28万 - 项目类别:
Research Grant
Animating Humans from Static Images via an Entirely Image-Based Approach
通过完全基于图像的方法从静态图像中赋予人类动画
- 批准号:
EP/F066473/1 - 财政年份:2008
- 资助金额:
$ 14.28万 - 项目类别:
Research Grant
Amplifiable Bi-directional Texture Functions for 3D High Fidelity Images
用于 3D 高保真图像的可放大双向纹理函数
- 批准号:
EP/C006623/2 - 财政年份:2007
- 资助金额:
$ 14.28万 - 项目类别:
Research Grant
Amplifiable Bi-directional Texture Functions for 3D High Fidelity Images
用于 3D 高保真图像的可放大双向纹理函数
- 批准号:
EP/C006623/1 - 财政年份:2006
- 资助金额:
$ 14.28万 - 项目类别:
Research Grant
相似国自然基金
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Development of a virtual clinical trial system based on extrapolated data
基于外推数据的虚拟临床试验系统的开发
- 批准号:
23K11879 - 财政年份:2023
- 资助金额:
$ 14.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of medical imaging devices based on Virtual Clinical Trial: Proof of concept
基于虚拟临床试验的医学成像设备的开发:概念验证
- 批准号:
21KK0286 - 财政年份:2022
- 资助金额:
$ 14.28万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Interactive Transition Support for Adolescents Living with HIV Comparing Virtual and In-person delivery through a stepped-wedge cluster randomized clinical trial in South Africa
通过南非的阶梯楔形集群随机临床试验对艾滋病毒感染青少年提供交互式过渡支持,比较虚拟和面对面的交付
- 批准号:
10689138 - 财政年份:2022
- 资助金额:
$ 14.28万 - 项目类别:
A Randomized Clinical Trial of Smartphone Virtual Reality for Pain Management During Burn Care Transition
智能手机虚拟现实在烧伤护理过渡期间疼痛管理的随机临床试验
- 批准号:
10567918 - 财政年份:2022
- 资助金额:
$ 14.28万 - 项目类别:
A Randomized Clinical Trial of Smartphone Virtual Reality for Pain Management During Burn Care Transition
智能手机虚拟现实在烧伤护理过渡期间疼痛管理的随机临床试验
- 批准号:
10708914 - 财政年份:2022
- 资助金额:
$ 14.28万 - 项目类别:
Interactive Transition Support for Adolescents Living with HIV Comparing Virtual and In-person delivery through a stepped-wedge cluster randomized clinical trial in South Africa
通过南非的阶梯楔形集群随机临床试验对艾滋病毒感染青少年提供交互式过渡支持,比较虚拟和面对面的交付
- 批准号:
10548060 - 财政年份:2022
- 资助金额:
$ 14.28万 - 项目类别:
A Pragmatic Randomized Clinical Trial on Immersive Virtual Reality Compared to Non-Immersive Distraction Using a Tablet for Pain and Anxiety Management of Children During Bone Pins and Sutures Removal in Orthopedic Clinics
一项关于沉浸式虚拟现实与非沉浸式分心比较的实用随机临床试验,在骨科诊所的骨钉和缝线拆除过程中使用平板电脑来管理儿童的疼痛和焦虑
- 批准号:
435800 - 财政年份:2020
- 资助金额:
$ 14.28万 - 项目类别:
Operating Grants
Virtual Reality Tools to Enhance Evidence Based Treatment of Substance Use Disorders (R41/R42 - Clinical Trial Optional)
增强药物使用障碍循证治疗的虚拟现实工具(R41/R42 - 临床试验可选)
- 批准号:
9898050 - 财政年份:2020
- 资助金额:
$ 14.28万 - 项目类别:
Establishment of a virtual clinical trial system considering variations in factors governing drug tissue distribution, efficacy, and side effects.
考虑药物组织分布、疗效和副作用因素变化的虚拟临床试验系统的建立。
- 批准号:
19H03392 - 财政年份:2019
- 资助金额:
$ 14.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Efficacy of Virtual Reality Exercises using Wii Gaming Technology in STroke rehabilitation: a Multicentre randomized clinical trial (EVREST MULTICENTRE)
使用 Wii 游戏技术进行虚拟现实练习在中风康复中的功效:一项多中心随机临床试验 (EVREST MULTICENTRE)
- 批准号:
241125 - 财政年份:2011
- 资助金额:
$ 14.28万 - 项目类别:
Salary Programs