Brain Commands and Beyond: Decoding Inner Speech for Neural Prosthetics

大脑命令及其他:解码神经修复术的内部语音

基本信息

  • 批准号:
    MR/X00757X/1
  • 负责人:
  • 金额:
    $ 172.23万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Millions of people worldwide are deprived of the simple ability to speak because of neurological disorders such as traumatic brain injury, brainstem stroke, or motor neurone disease. In the latter case, the loss of speech is often considered the worst outcome of disease progression. The current state of assistive communication technologies (such as those used by Stephen Hawking) can provide some relief. However, they require residual motor control such as cheek or eye movements. Current technologies also suffer from frustratingly low latencies, with users producing only 20 words per minute. Natural speech, by contrast, is produced at the rate of hundreds of words per minute. For all of these reasons, a new class of speech neuroprosthetic - capable of reading out (or "decoding") intended speech directly from the brain - would provide significant benefits to some of the most isolated people in society. The perfection of speech neuroprosthetics will also represent a scientific milestone in our understanding of how speech and language are represented in the brain. The first speech neuroprosthetic was achieved in a paralysed (anarthric) patient in the summer of 2021. Like much recent work, this landmark study used data from electrodes implanted in the sensorimotor cortex. Although there are advantages to such data, they also have limitations beyond the risk of surgery and installation of electronics into the brain. It is very difficult to obtain large amounts of these surgical data, which limits our ability to leverage the power of deep learning. Another important limitation of surgical data is that speech neuroprosthetics focus on decoding "inner" speech. Unlike overt speech, much less is known about the underlying neurobiology of inner speech. Is it more like imagined articulation ("motor imagery") or imagined audition ("auditory imagery")? Surgical data often targets the sensorimotor cortex, which makes sense for the decoding of overtly articulated speech. But this may be suboptimal for decoding inner speech.Here, we focus on non-invasive inner speech decoding with MRI and magnetoencephalography (MEG). Non-invasive neuroimaging provides, at least, complementary insights to surgical data. The first objective of the project thus seeks to address questions about the nature of inner speech: Where in the brain can we decode it? Does the neural organisation of inner speech differ between individuals? How well can decoders be transferred from one person to another? Answering questions like these will help to design better neuroprosthetics in any imaging modality. Turning to the second objective, there are good reasons to believe that non-invasive methods will produce a viable and less risky speech neuroprosthetic for paralysed patients. MEG-based decoders for speech comprehension (i.e. listening to speech) produce impressive results. Decoding inner speech is harder but - as our pilot data suggests - can be overcome by a combination of big data and deep learning. Thus the project aims to acquire a MEG dataset of sufficient scope (hundreds of hours) within-subject to show that inner speech decoders can, in principle, solve a sequence of tasks from keyword spotting (easier) to large-vocabulary continuous inner speech decoding (harder). The goal is not only to produce state-of-the-art results for each of these tasks, staggered by increasing difficulty and usefulness, but to shape a clear set of objectives for the community to optimise. Thus the MEG data will be released as part of a machine learning competition, inspired by the role that the ImageNet competitions have had in driving the field of computer vision over the past 10 years. We aim to drive similar advances for inner speech decoding.
由于神经系统疾病,例如脑损伤,脑干中风或运动神经元疾病,全世界数百万的人被剥夺了说话的简单能力。在后一种情况下,言语丧失通常被认为是疾病进展的最糟糕结果。辅助通信技术的当前状态(例如斯蒂芬·霍金(Stephen Hawking)使用的技术)可以缓解。但是,它们需要残留的运动控制,例如脸颊或眼睛运动。当前的技术还遭受了令人沮丧的低潜伏期,用户每分钟只能产生20个单词。相比之下,自然语音以每分钟数百个单词的速度产生。由于所有这些原因,可以直接从大脑中读取(或“解码”)意图的言语的新的言语神经假话,这将为社会上一些最孤立的人带来重大好处。言语神经心想的完美也将代表我们对言语和语言在大脑中如何代表的科学里程碑。在2021年夏天,在瘫痪(Anarthric)患者中实现了第一个语音神经假体。与最近的许多工作一样,这项具有里程碑意义的研究使用了植入了感觉运动皮层中的电极的数据。尽管此类数据具有优势,但它们也有超出手术风险和将电子设备安装到大脑中的局限性。获得大量这些手术数据非常困难,这限制了我们利用深度学习力量的能力。手术数据的另一个重要局限性是语音神经po的侧重于解码“内部”语音。与公开的言语不同,关于内部语音的基本神经生物学知之甚少。它更像是想象中的发音(“运动图像”)或想象中的试听(“听觉图像”)?手术数据通常靶向感觉运动皮层,这对于对公开表达的语音的解码很有意义。但这可能是解码内部语音的次优。在这里,我们专注于使用MRI和磁脑摄影(MEG)的非侵入性内部语音解码。非侵入性神经影像学至少提供了对手术数据的互补见解。因此,该项目的第一个目标试图解决有关内部语音本质的问题:我们可以在哪里解码它?个体之间内部语音的神经组织会有所不同吗?解码器如何从一个人转移到另一个人?回答这样的问题将有助于在任何成像模式中设计更好的神经植物。转向第二个目标,有充分的理由相信非侵入性方法会为瘫痪的患者产生可行且风险较小的语音神经假体。基于MEG的语音理解解码器(即聆听语音)产生了令人印象深刻的结果。解码内部语音更难,但是 - 正如我们的飞行员数据所建议的那样,可以通过大数据和深度学习的结合来克服。因此,该项目旨在获取足够范围(数百个小时)内部主体的MEG数据集,以表明内部语音解码器原则上可以解决一系列任务,从关键字发现(易于)到大型vocabulary vocabulary连续的内部语音解码(更难)。该目标不仅是为每个任务中的每一个都产生最新的结果,并因增加难度和实用性而错开,而且要塑造一套明确的目标,以供社区优化。因此,MEG数据将作为机器学习竞赛的一部分发布,灵感来自于ImageNet竞赛在过去10年中推动计算机视野领域的作用。我们旨在推动内部语音解码的类似进步。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Group-level brain decoding with deep learning.
  • DOI:
    10.1002/hbm.26500
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Csaky, Richard;van Es, Mats W. J.;Jones, Oiwi Parker;Woolrich, Mark
  • 通讯作者:
    Woolrich, Mark
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Metal nanoparticles entrapped in metal matrices.
  • DOI:
    10.1039/d1na00315a
  • 发表时间:
    2021-07-27
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
  • 通讯作者:
Ged?chtnis und Wissenserwerb [Memory and knowledge acquisition]
  • DOI:
    10.1007/978-3-662-55754-9_2
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A Holistic Evaluation of CO2 Equivalent Greenhouse Gas Emissions from Compost Reactors with Aeration and Calcium Superphosphate Addition
曝气和添加过磷酸钙的堆肥反应器二氧化碳当量温室气体排放的整体评估
  • DOI:
    10.3969/j.issn.1674-764x.2010.02.010
  • 发表时间:
    2010-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship

相似国自然基金

不确定非线性系统凸优化模糊自适应命令滤波反步控制及应用
  • 批准号:
    62303255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
针对动态无线充电系统的基于事件触发和命令滤波的保性能控制方法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
不确定非线性约束系统的有限时间命令滤波模糊控制
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
不同环境规制下绿色创新效应研究:微观机制与政策选择
  • 批准号:
    71903063
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
基于双向重力货架的高密度仓储系统管理与优化研究
  • 批准号:
    71602169
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

実時間ハイブリッド実験における数値積分計算中の試験機制御命令信号生成に関する検討
实时混合实验数值积分计算中试验机控制指令信号生成研究
  • 批准号:
    24KJ1435
  • 财政年份:
    2024
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ストカスティック演算回路の実装と専用命令化に関する研究
随机运算电路及专用指令的实现研究
  • 批准号:
    24K14878
  • 财政年份:
    2024
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
命令文研究における他動的使役性の再考と有標破格構文の扱い
祈使句研究中及物使役及标记缺席结构的再思考
  • 批准号:
    24K03947
  • 财政年份:
    2024
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of the "Litigation Practice Model" for Education Policy Making through the Courts in the U.S. and Japan
美国和日本通过法院制定教育政策的“诉讼实践模式”的发展
  • 批准号:
    22KK0215
  • 财政年份:
    2023
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Studies on instruction-level self-degradation detection mechanism and automated test program generation for processors
处理器指令级自退化检测机制及自动化测试程序生成研究
  • 批准号:
    23K11035
  • 财政年份:
    2023
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了