Brain Commands and Beyond: Decoding Inner Speech for Neural Prosthetics

大脑命令及其他:解码神经修复术的内部语音

基本信息

  • 批准号:
    MR/X00757X/1
  • 负责人:
  • 金额:
    $ 172.23万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Millions of people worldwide are deprived of the simple ability to speak because of neurological disorders such as traumatic brain injury, brainstem stroke, or motor neurone disease. In the latter case, the loss of speech is often considered the worst outcome of disease progression. The current state of assistive communication technologies (such as those used by Stephen Hawking) can provide some relief. However, they require residual motor control such as cheek or eye movements. Current technologies also suffer from frustratingly low latencies, with users producing only 20 words per minute. Natural speech, by contrast, is produced at the rate of hundreds of words per minute. For all of these reasons, a new class of speech neuroprosthetic - capable of reading out (or "decoding") intended speech directly from the brain - would provide significant benefits to some of the most isolated people in society. The perfection of speech neuroprosthetics will also represent a scientific milestone in our understanding of how speech and language are represented in the brain. The first speech neuroprosthetic was achieved in a paralysed (anarthric) patient in the summer of 2021. Like much recent work, this landmark study used data from electrodes implanted in the sensorimotor cortex. Although there are advantages to such data, they also have limitations beyond the risk of surgery and installation of electronics into the brain. It is very difficult to obtain large amounts of these surgical data, which limits our ability to leverage the power of deep learning. Another important limitation of surgical data is that speech neuroprosthetics focus on decoding "inner" speech. Unlike overt speech, much less is known about the underlying neurobiology of inner speech. Is it more like imagined articulation ("motor imagery") or imagined audition ("auditory imagery")? Surgical data often targets the sensorimotor cortex, which makes sense for the decoding of overtly articulated speech. But this may be suboptimal for decoding inner speech.Here, we focus on non-invasive inner speech decoding with MRI and magnetoencephalography (MEG). Non-invasive neuroimaging provides, at least, complementary insights to surgical data. The first objective of the project thus seeks to address questions about the nature of inner speech: Where in the brain can we decode it? Does the neural organisation of inner speech differ between individuals? How well can decoders be transferred from one person to another? Answering questions like these will help to design better neuroprosthetics in any imaging modality. Turning to the second objective, there are good reasons to believe that non-invasive methods will produce a viable and less risky speech neuroprosthetic for paralysed patients. MEG-based decoders for speech comprehension (i.e. listening to speech) produce impressive results. Decoding inner speech is harder but - as our pilot data suggests - can be overcome by a combination of big data and deep learning. Thus the project aims to acquire a MEG dataset of sufficient scope (hundreds of hours) within-subject to show that inner speech decoders can, in principle, solve a sequence of tasks from keyword spotting (easier) to large-vocabulary continuous inner speech decoding (harder). The goal is not only to produce state-of-the-art results for each of these tasks, staggered by increasing difficulty and usefulness, but to shape a clear set of objectives for the community to optimise. Thus the MEG data will be released as part of a machine learning competition, inspired by the role that the ImageNet competitions have had in driving the field of computer vision over the past 10 years. We aim to drive similar advances for inner speech decoding.
全世界数以百万计的人因为创伤性脑损伤、脑干中风或运动神经元疾病等神经系统疾病而被剥夺了简单的说话能力。在后一种情况下,言语丧失通常被认为是疾病进展的最坏结果。目前的辅助通信技术(如史蒂芬·霍金使用的技术)可以提供一些缓解。然而,它们需要残留的运动控制,如脸颊或眼睛的运动。目前的技术还存在延迟低得令人沮丧的问题,用户每分钟只产生20个单词。相比之下,自然语言是以每分钟数百个单词的速度产生的。由于所有这些原因,一种新型的言语神经假体--能够直接从大脑读出(或“解码”)预期的言语--将为社会上一些最孤立的人带来显著的好处。语言神经假体的完善也将代表着我们在理解语言和语言在大脑中的表现方式方面的一个科学里程碑。2021年夏天,第一个言语神经假体在一名瘫痪(无关节)患者身上完成。与最近的许多工作一样,这项里程碑式的研究使用了植入感觉运动皮质的电极的数据。尽管这些数据有优势,但它们也有局限性,超出了手术和将电子设备安装到大脑中的风险。要获得大量的手术数据是非常困难的,这限制了我们利用深度学习的能力。外科手术数据的另一个重要限制是,语音神经假体专注于解码“内心”的语音。与外在言语不同,人们对内在言语的潜在神经生物学知之甚少。它更像是想象中的发音(“运动想象”)还是想象中的试听(“听觉想象”)?外科手术数据通常针对感觉运动皮质,这对公开表达的语音的解码是有意义的。但这对于解码内部语音来说可能是次优的。在这里,我们重点研究MRI和脑磁图(MEG)的非侵入性内部语音解码。非侵入性神经成像至少为外科数据提供了补充的见解。因此,该项目的第一个目标是解决关于内心语言本质的问题:我们在大脑的什么地方可以解码它?内心语言的神经组织是否因个体不同而不同?解码员从一个人转移到另一个人的效果如何?回答这样的问题将有助于在任何成像方式下设计更好的神经假体。谈到第二个目标,我们有充分的理由相信,非侵入性方法将为瘫痪患者提供一种可行的、风险更低的语言神经假体。基于脑磁图的语音理解(即听语音)解码器产生了令人印象深刻的结果。破译内心的语言更难,但正如我们的试点数据所表明的那样,大数据和深度学习的结合可以克服这一点。因此,该项目的目标是在受试者内部获得足够范围(数百小时)的脑磁图数据集,以表明内部语音解码器原则上可以解决从关键字识别(更容易)到大词汇量连续内部语音解码(更难)的一系列任务。我们的目标不仅是为这些任务中的每一项产生最先进的结果,因为难度和实用性的增加而交错,而且还形成了一套明确的目标,供社区优化。因此,MEG数据将作为机器学习竞赛的一部分发布,灵感来自ImageNet竞赛在过去10年里推动计算机视觉领域的作用。我们的目标是推动内部语音解码的类似进步。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Group-level brain decoding with deep learning.
  • DOI:
    10.1002/hbm.26500
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Csaky, Richard;van Es, Mats W. J.;Jones, Oiwi Parker;Woolrich, Mark
  • 通讯作者:
    Woolrich, Mark
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Studentship

相似海外基金

Wearable eye tracking and mental commands for touch-free computational assistance
可穿戴式眼球追踪和心理命令,提供非接触式计算辅助
  • 批准号:
    575143-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 172.23万
  • 项目类别:
    University Undergraduate Student Research Awards
Neural Commands for Fast Movements in the Primate Motor System
灵长类动物运动系统快速运动的神经命令
  • 批准号:
    BB/V00896X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Research Grant
Decoding motor commands and sensory information encoded in cerebellar mossy fibers: investigation by simultaneous observation of multiple fibers.
解码小脑苔藓纤维中编码的运动命令和感觉信息:通过同时观察多个纤维进行调查。
  • 批准号:
    19K06883
  • 财政年份:
    2019
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SaTC: CORE: Small: Practical and Robust Hidden Voice Commands
SaTC:核心:小:实用且强大的隐藏语音命令
  • 批准号:
    1718498
  • 财政年份:
    2017
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Standard Grant
robotic manipulator control interface based on speech and single-handed finger touch commands
基于语音和单手手指触摸命令的机器人机械手控制界面
  • 批准号:
    17K00283
  • 财政年份:
    2017
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Extraction of motor and sensory commands in the brain using a sparsely-distributed brain-machine interface
使用稀疏分布的脑机接口提取大脑中的运动和感觉命令
  • 批准号:
    17K17684
  • 财政年份:
    2017
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The Integration of Feedforward Locomotor Commands and Sensory Feedback Signals by Medullary Reticulospinal Neurons that Mediate Postural Responses
调节姿势反应的髓质网状脊髓神经元对前馈运动命令和感觉反馈信号的整合
  • 批准号:
    9049821
  • 财政年份:
    2016
  • 资助金额:
    $ 172.23万
  • 项目类别:
The Integration of Feedforward Locomotor Commands and Sensory Feedback Signals by Medullary Reticulospinal Neurons that Mediate Postural Responses
调节姿势反应的髓质网状脊髓神经元对前馈运动命令和感觉反馈信号的整合
  • 批准号:
    9387055
  • 财政年份:
    2016
  • 资助金额:
    $ 172.23万
  • 项目类别:
Development of lead commands for new anti-infective agents
开发新型抗感染药物的先导指令
  • 批准号:
    26670043
  • 财政年份:
    2014
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Speech and multi-touch commands for controlling a robotic manipulator
用于控制机器人操纵器的语音和多点触控命令
  • 批准号:
    26330234
  • 财政年份:
    2014
  • 资助金额:
    $ 172.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了