Promoting self-repair after Spinal Cord Injury
促进脊髓损伤后的自我修复
基本信息
- 批准号:MR/X021947/1
- 负责人:
- 金额:$ 100.27万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Mammals, including humans, have a poor ability to repair their spinal cord upon injury. About 27 million people worldwide suffer long-term disability following spinal cord injury (SCI). Depending on the severity of the injury it can cause irreversible damage, which can lead to the loss of motor and sensory function below the site of the damage. This has far reaching consequences for the life of patients affected by SCI as they face lifelong confinement in a wheelchair, dependency on medical care and the risk of premature death. Therefore, there is a high requirement for improving regenerative capabilities of the spinal cord after injury.However, some vertebrates, such as zebrafish, the newt Axolotl and the tadpoles of the amphibian Xenopus can regenerate their spinal cord. Animal models are essential for biomedical research and Xenopus has unique advantages. It is easy to obtain large number of eggs, which develop externally and are accessible at all stages of development. The genome of Xenopus tropicalis has been sequenced and shows striking similarities with the human genome, meaning that findings from Xenopus provide insight into many human conditions and diseases. Finally, Xenopus sits at an interesting juncture in term of regeneration. During its tadpole stages, Xenopus can regenerate most tissues including its spinal cord however this ability is lost after metamorphosis, allowing comparative studies within one species.We and others have developed tools and resources to make Xenopus a relevant model to study spinal cord development, function and regeneration. The spinal cord is a complex tissue comprising undifferentiated cells (called progenitors) and many different types of differentiated neurons that need to work together. We have shown that the Xenopus spinal cord is very similar to that of mammals, making it a relevant model to study its regeneration. A hallmark of successful repair of regeneration of neural tissue is the ability of progenitors to generate new neurons, a process known as neurogenesis.The goal of this project is to uncover the mechanisms that promote neurogenesis during spinal cord regeneration in Xenopus. We will then use this knowledge to stimulate neurogenesis in a mammalian model of spinal cord injury. This research will provide an important platform to develop innovative strategies to improve the outcome of patients suffering from spinal cord injury.
包括人类在内的哺乳动物在受伤后修复脊髓的能力很差。全世界约有2700万人在脊髓损伤(SCI)后遭受长期残疾。根据损伤的严重程度,它可能会导致不可逆的损伤,这可能会导致损伤部位以下的运动和感觉功能丧失。这对受SCI影响的患者的生活产生了深远的影响,因为他们面临终身坐在轮椅上,依赖医疗护理和过早死亡的风险。因此,对脊髓损伤后再生能力的提高有很高的要求,而有些脊椎动物,如斑马鱼、蝾螈、两栖动物爪蟾的蝌蚪等都能再生脊髓。动物模型是生物医学研究的基础,而爪蟾具有独特的优势。很容易获得大量的卵子,这些卵子在外部发育,并且在发育的各个阶段都可以获得。非洲爪蟾的基因组已经被测序,并显示出与人类基因组惊人的相似性,这意味着非洲爪蟾的发现提供了对许多人类状况和疾病的见解。最后,爪蟾在再生方面处于一个有趣的时刻。在蝌蚪阶段,爪蟾可以再生包括脊髓在内的大部分组织,但这种能力在变态后丧失,允许在一个物种内进行比较研究。我们和其他人开发了工具和资源,使爪蟾成为研究脊髓发育,功能和再生的相关模型。脊髓是一个复杂的组织,包括未分化的细胞(称为祖细胞)和许多不同类型的分化的神经元,需要一起工作。我们已经表明,非洲爪蟾脊髓是非常相似的哺乳动物,使其成为一个相关的模型,以研究其再生。神经组织再生成功修复的一个标志是祖细胞产生新神经元的能力,这一过程被称为神经发生。本项目的目标是揭示非洲爪蟾脊髓再生过程中促进神经发生的机制。然后,我们将利用这些知识来刺激脊髓损伤的哺乳动物模型中的神经发生。这项研究将提供一个重要的平台,以开发创新的策略,以改善脊髓损伤患者的预后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karel Dorey其他文献
21-P019 The role of Sprouty3, a new signalling regulator, in <em>Xenopus</em> development
- DOI:
10.1016/j.mod.2009.06.884 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Niki Panagiotaki;Karel Dorey;Nancy Papalopulu;Enrique Amaya - 通讯作者:
Enrique Amaya
Efa6 regulates axon growth, branching and maintenance by eliminating off-track microtubules at the cortex
Efa6 通过消除皮层偏离轨道的微管来调节轴突生长、分支和维护
- DOI:
10.1101/385658 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yue Qu;Ines Hahn;Meredith Lees;J. Parkin;André Voelzmann;Karel Dorey;Alex Rathbone;Claire T. Friel;V. Allan;Pilar Okenve Ramos;N. Sánchez;A. Prokop - 通讯作者:
A. Prokop
Efa 6 protects axons and regulates their growth and branching through eliminating off-track 1 microtubules at the cortex 2 3
Efa 6 通过消除皮层偏离轨道的微管 2 3 来保护轴突并调节其生长和分支
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yue Qu;Ines Hahn;Meredith Lees;J. Parkin;André Voelzmann;Karel Dorey;Alex;Rathbone;Claire T. Friel;V. Allan;Pilar Okenve;N. Sánchez;Andreas;Prokop - 通讯作者:
Prokop
Efa 6 protects axons and regulates their growth and branching by inhibiting 1 microtubule polymerisation at the cortex 2 3
Efa 6 通过抑制 1 皮质的微管聚合来保护轴突并调节其生长和分支 2 3
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yue Qu;Ines Hahn;Meredith Lees;J. Parkin;André Voelzmann;Karel Dorey;4. Alex;Rathbone;Claire T. Friel;V. Allan;Pilar Okenve;N. Sánchez;A. Prokop - 通讯作者:
A. Prokop
Karel Dorey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karel Dorey', 18)}}的其他基金
US partnering award - Single cell resolution in the context of the whole organism: using Xenopus to study axonal growth and regeneration
美国合作奖 - 整个生物体背景下的单细胞分辨率:利用非洲爪蟾研究轴突生长和再生
- 批准号:
BB/L026295/1 - 财政年份:2014
- 资助金额:
$ 100.27万 - 项目类别:
Research Grant
Regulation of axonal branching in vivo
体内轴突分支的调节
- 批准号:
BB/J005983/1 - 财政年份:2012
- 资助金额:
$ 100.27万 - 项目类别:
Research Grant
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
- 批准号:82371813
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
- 批准号:32302161
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于序贯递药体系实现对非酒精性脂肪肝的高渗给药和长效治疗
- 批准号:32001001
- 批准年份:2020
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
黎曼流形上的特殊几何结构及相关分类研究
- 批准号:11971153
- 批准年份:2019
- 资助金额:53.0 万元
- 项目类别:面上项目
新型代谢基因特征簇作为乳腺癌干细胞生物标志物及其靶向的研究
- 批准号:31900515
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
转录因子ZBTB7B在小鼠乳腺发育过程中的功能及机制研究
- 批准号:31900514
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Self-shrinkers的刚性及相关问题
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
微环境中缝隙连接对果蝇神经干细胞自我更新与分化的调控机制
- 批准号:31771510
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Novel Self-Closing, Transcatheter, Edge-to-Edge Repair Device to Percutaneously Treat Tricuspid Valve Regurgitation Using Jugular or Femoral Vein Access
SBIR 第一阶段:新型自闭合、经导管、边对边修复装置,利用颈静脉或股静脉通路经皮治疗三尖瓣反流
- 批准号:
2322197 - 财政年份:2024
- 资助金额:
$ 100.27万 - 项目类别:
Standard Grant
DNA glycosylases involved in interstrand crosslink repair and antibiotic self-resistance
DNA糖基化酶参与链间交联修复和抗生素自身抗性
- 批准号:
2341288 - 财政年份:2024
- 资助金额:
$ 100.27万 - 项目类别:
Standard Grant
Lumicks C-Trap Optical Tweezers with Confocal Fluorescence Microscope
Lumicks C-Trap 光镊与共焦荧光显微镜
- 批准号:
10629714 - 财政年份:2023
- 资助金额:
$ 100.27万 - 项目类别:
The Role of Bone Sialoprotein in Modulating Periodontal Development and Repair
骨唾液酸蛋白在调节牙周发育和修复中的作用
- 批准号:
10752141 - 财政年份:2023
- 资助金额:
$ 100.27万 - 项目类别:
Development of a Piezoelectric Intramedullary Nail for Enhanced Fracture Healing
开发用于增强骨折愈合的压电髓内钉
- 批准号:
10759862 - 财政年份:2023
- 资助金额:
$ 100.27万 - 项目类别:
Molecular mechanisms mediating the soft tissue attachment to teeth
介导软组织附着到牙齿的分子机制
- 批准号:
10838302 - 财政年份:2023
- 资助金额:
$ 100.27万 - 项目类别:
Understanding Lrig1+ in vocal fold epithelium and organoid biology
了解声带上皮和类器官生物学中的 Lrig1
- 批准号:
10732733 - 财政年份:2023
- 资助金额:
$ 100.27万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 100.27万 - 项目类别:
Genetic mapping of the inflammatory adaption circuit in epithelial stem cells
上皮干细胞炎症适应回路的遗传图谱
- 批准号:
10713508 - 财政年份:2023
- 资助金额:
$ 100.27万 - 项目类别:
Elucidate the mechanism of cartilage degeneration from synovial fluid exosomes and establish self-repair therapy by exercise
从滑液外泌体阐明软骨退化机制并建立运动自我修复疗法
- 批准号:
22KJ2541 - 财政年份:2023
- 资助金额:
$ 100.27万 - 项目类别:
Grant-in-Aid for JSPS Fellows