The First Environmental Digital Twin Dedicated to Understanding Tropical Wetland Methane Emissions for Improved Predictions of Climate Change
第一个致力于了解热带湿地甲烷排放以改进气候变化预测的环境数字孪生
基本信息
- 批准号:MR/X033139/1
- 负责人:
- 金额:$ 161.82万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Methane (CH4) is a major greenhouse gas. Its short atmospheric lifetime (~9 years) means we can mitigate its emissions and warming effects. At COP26, countries signed up to the Methane Pledge, strengthened at COP27, committing to reduce emissions in 2030 by 30%, eliminating over 0.2C of global warming by 2050.The challenge is that methane has many sources, man-made and natural. Man-made emissions include significant contributions from fossil fuels (111 Tg CH4 yr-1) and agriculture/waste (217 Tg CH4 yr-1), with natural signals dominated by wetland emissions (181 Tg CH4 yr-1, >30% of total emissions). Estimates suggest tropical wetlands contribute >65% of all wetland emissions, over 20% of the total global methane budget. However, these estimates are hugely uncertain. To fully understand the methane budget, we must monitor these natural emissions and understand how, when and where they are produced and how they might change under future climate scenarios. Failure to do so would restrict capability to inform policy and take mitigation action.The problem is becoming more urgent. Recent years have seen a rapid and surprising increase in atmospheric methane. Global values increased by 15 ppb in 2020 and 18 ppb in 2021, compared to 5-12 ppb in recent years. This acceleration is alarming and points to significant climate-feedbacks that are not fully understood nor expected. Studies using satellite data generated by my work (e.g. Qu et al., 2022, Feng et al., 2022) have reached the conclusion that tropical wetlands are the likely source of this new, and as of yet unexplained, increase in the methane growth rate. We know methane is produced in wetlands by microbes but questions remain on the effect of factors such as temperature, water level and soil type. State-of-the-art process-based land surface models can produce wetland methane emissions but huge discrepancies between model estimates limit their utility and assessing these models against observations is key. Importantly, we also do not know how large these methane-producing wetland areas are, as they continually change in size in response to rainfall and riverflow. Therefore, even if models capture the correct wetland methane climate-response, the wetland extent itself will limit ability to accurately estimate emissions. The problem therefore is two-fold: 1) Can we reconcile large discrepancies in our ability to model the wetland methane emission response to climate feedbacks? 2) Can we dramatically improve our estimates of wetland extent to constrain the spatial/temporal changes in methane emissions?This fellowship will use satellite observations and land surface models to build an innovative and dedicated Wetland Digital Twin; a machine-learning system capable of estimating methane produced by wetlands, transforming our understanding of the causes of methane emissions and responses to the changing climate.In parallel, we need much better knowledge of wetland locations and how they change over time. By applying new machine-learning methods to very-high-resolution satellite imagery and combining with advanced hydrological modelling, I will better map these wetland areas and understand their dynamics. To achieve this, I will work closely with Project Partners, specialising in land surface modelling (GCP, UKCEH, UK Met Office), machine learning and artificial intelligence (ESA Phi-Lab, NEODAAS), IT infrastructure (NEODAAS, JASMIN, CGI), high-resolution remote sensing (Planet) and climate modelling (UK Met Office) while also engaging with a range of Stakeholders from wetland ecosystem specialists to policymakers (e.g. COP/IPCC, UNEP, RAMSAR, CIFOR, CEOS/GCOS).This new Wetland Digital Twin capability, driven by Earth Observation data and powered by machine learning, will allow us to develop climate services that are capable of providing decision-support for policymakers and enable better understanding of the climate response of these critical ecosystems.
甲烷(CH 4)是一种主要的温室气体。它在大气中的寿命很短(约9年),这意味着我们可以减轻其排放和变暖效应。在COP 26上,各国签署了在COP 27上得到加强的甲烷承诺,承诺到2030年将排放量减少30%,到2050年消除全球变暖0.2摄氏度以上。人为排放包括化石燃料(111 Tg CH 4 yr-1)和农业/废物(217 Tg CH 4 yr-1)的重要贡献,自然信号主要是湿地排放(181 Tg CH 4 yr-1,>总排放量的30%)。据估计,热带湿地贡献了所有湿地排放量的65%以上,占全球甲烷总预算的20%以上。然而,这些估计是非常不确定的。为了充分了解甲烷预算,我们必须监测这些自然排放,并了解它们是如何、何时、何地产生的,以及它们在未来气候情景下可能如何变化。如果不这样做,就会限制为政策提供信息和采取缓解行动的能力。近年来,大气中的甲烷含量迅速而惊人地增加。2020年全球数值增加了15 ppb,2021年增加了18 ppb,而近年来为5-12 ppb。这种加速令人震惊,并指出了尚未完全理解或预期的重大气候反馈。使用我的工作产生的卫星数据的研究(例如Qu et al.,2022,Feng等人,2022年)得出的结论是,热带湿地可能是这种新的,但尚未解释的甲烷增长率增加的来源。我们知道甲烷是由微生物在湿地中产生的,但问题仍然存在于温度,水位和土壤类型等因素的影响。最先进的基于过程的陆面模型可以产生湿地甲烷排放量,但模型估计值之间的巨大差异限制了它们的实用性,并根据观测结果评估这些模型是关键。重要的是,我们也不知道这些产生甲烷的湿地面积有多大,因为它们的大小会随着降雨和河流流量的变化而不断变化。因此,即使模型捕捉到正确的湿地甲烷气候响应,湿地范围本身也会限制准确估计排放量的能力。因此,问题是双重的:1)我们能否调和我们的能力,以模拟湿地甲烷排放响应气候反馈的巨大差异?2)我们能否显著改善我们对湿地范围的估计,以限制甲烷排放的时空变化?该奖学金将利用卫星观测和地表模型建立一个创新的专用湿地数字孪生模型;一个能够估计湿地产生的甲烷的机器学习系统,改变我们对甲烷排放原因和应对气候变化的理解。同时,我们需要更好地了解湿地的位置及其随时间的变化。通过将新的机器学习方法应用于超高分辨率卫星图像,并结合先进的水文建模,我将更好地绘制这些湿地区域并了解它们的动态。为了实现这一目标,我将与项目合作伙伴密切合作,专门从事陆地表面建模(GCP,UKCEH,英国气象局),机器学习和人工智能(欧空局Phi-Lab,NEODAAS),信息技术基础设施(NEODAAS,JASMIN,CGI),高分辨率遥感(行星)和气候建模(英国气象局),同时还与从湿地生态系统专家到政策制定者的一系列利益相关者进行接触(如COP/IPCC、UNEP、RAMSAR、CIFOR、CEOS/GCOS)。这种新的湿地数字孪生能力由地球观测数据驱动,由机器学习提供动力,将使我们能够发展能够提供决策的气候服务,为决策者提供支持,使他们能够更好地了解这些关键生态系统的气候反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Parker其他文献
Chemical process flowsheet optimization with full space, surrogate, and implicit formulations of a Gibbs reactor
使用吉布斯反应器的全空间、替代和隐式公式优化化学工艺流程图
- DOI:
10.48550/arxiv.2310.09307 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sergio I. Bugosen;Carl D. Laird;Robert Parker - 通讯作者:
Robert Parker
PSA density does not improve predictive accuracy of the UCSF‐CAPRA score
PSA 密度不会提高 UCSF-CAPRA 评分的预测准确性
- DOI:
10.1002/pros.24533 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Robert Parker;Alexander Bell;Kevin Chang;S. Greenberg;S. Washington;J. Cowan;Peter R. Carroll;M. Cooperberg - 通讯作者:
M. Cooperberg
Activity Restrictions and Recovery After Open Chest Surgery: Understanding the Patient's Perspective
开胸手术后的活动限制和恢复:了解患者的观点
- DOI:
10.1080/08998280.2008.11928442 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Robert Parker;Jenny Adams - 通讯作者:
Jenny Adams
Optimizing hemadsorption therapy with model predictive control
- DOI:
10.1016/j.jcrc.2008.03.033 - 发表时间:
2008-06-01 - 期刊:
- 影响因子:
- 作者:
Justin Hogg;Gilles Clermont;John Kellum;Robert Parker - 通讯作者:
Robert Parker
Closing the high seas to fisheries: Possible impacts on aquaculture
- DOI:
10.1016/j.marpol.2020.103854 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Daniel Peñalosa Martinell;Tim Cashion;Robert Parker;U. Rashid Sumaila - 通讯作者:
U. Rashid Sumaila
Robert Parker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Parker', 18)}}的其他基金
Lexicon of Greek Personal Names- Lower Egypt and the Fayum
希腊人名词典 - 下埃及和法尤姆
- 批准号:
AH/S005005/1 - 财政年份:2019
- 资助金额:
$ 161.82万 - 项目类别:
Research Grant
Engineering Personalized Cancer Chemotherapy Schedules
设计个性化癌症化疗方案
- 批准号:
1235182 - 财政年份:2012
- 资助金额:
$ 161.82万 - 项目类别:
Standard Grant
REU Site: Engineering Tools for Decision Support in Systems Medicine
REU 网站:系统医学决策支持工程工具
- 批准号:
1156899 - 财政年份:2012
- 资助金额:
$ 161.82万 - 项目类别:
Continuing Grant
Lexicon of Greek Personal Names: Coastal Asia Minor
希腊人名词典:小亚细亚沿海地区
- 批准号:
AH/E509959/1 - 财政年份:2007
- 资助金额:
$ 161.82万 - 项目类别:
Research Grant
CAREER: Control Design using Data-Driven Models: Exploiting Model Structure
职业:使用数据驱动模型进行控制设计:利用模型结构
- 批准号:
0134129 - 财政年份:2002
- 资助金额:
$ 161.82万 - 项目类别:
Standard Grant
CAREER: Vibration and Stability of Spinning Disk-Spindle Systems and High-Speed Belt Drives
职业:旋转盘主轴系统和高速皮带传动的振动和稳定性
- 批准号:
9875635 - 财政年份:1999
- 资助金额:
$ 161.82万 - 项目类别:
Standard Grant
Homicide in Urban America: 1950-1980
美国城市凶杀案:1950-1980
- 批准号:
9196182 - 财政年份:1991
- 资助金额:
$ 161.82万 - 项目类别:
Continuing Grant
Graduate Research Fellowship Program
研究生研究奖学金计划
- 批准号:
9054704 - 财政年份:1990
- 资助金额:
$ 161.82万 - 项目类别:
Fellowship Award
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Centre for Doctoral Training in Real-Time Digital Water-Based Systems for Environmental Health Protection (RED-ALERT CDT)
环境健康保护实时数字水基系统博士培训中心(RED-ALERT CDT)
- 批准号:
NE/Y006380/1 - 财政年份:2024
- 资助金额:
$ 161.82万 - 项目类别:
Training Grant
Digital and physical incremental renovation packages/systems enhancing environmental and energetic behaviour and use of resources
数字和物理增量改造包/系统增强环境和能源行为以及资源的利用
- 批准号:
10056917 - 财政年份:2023
- 资助金额:
$ 161.82万 - 项目类别:
EU-Funded
Integrating digital Earth Observation environmental data into financial services decision making
将数字地球观测环境数据纳入金融服务决策
- 批准号:
10031337 - 财政年份:2022
- 资助金额:
$ 161.82万 - 项目类别:
Collaborative R&D
Digital technology to assess and reduce environmental impacts in supply chains.
用于评估和减少供应链中环境影响的数字技术。
- 批准号:
10043744 - 财政年份:2022
- 资助金额:
$ 161.82万 - 项目类别:
Grant for R&D
Piloting an Information Management Framework for Environmental Digital Twins
试点环境数字孪生信息管理框架
- 批准号:
NE/X016765/1 - 财政年份:2022
- 资助金额:
$ 161.82万 - 项目类别:
Research Grant
The Bio-Digital Garden Game: A feminist investigation of designing an ecocentric game, turning competition into collaboration to achieve environmental
生物数字花园游戏:设计一款以生态为中心的游戏的女权主义调查,将竞争转化为合作,以实现环保
- 批准号:
2743271 - 财政年份:2022
- 资助金额:
$ 161.82万 - 项目类别:
Studentship
Engaging Underrepresented Populations in Environmental Action through Mentoring, Geospatial Technology and Digital Media Storytelling
通过指导、地理空间技术和数字媒体讲故事,让弱势群体参与环境行动
- 批准号:
2148606 - 财政年份:2022
- 资助金额:
$ 161.82万 - 项目类别:
Standard Grant
Agitation in Alzheimer's Disease: Identification and Prediction Using Digital Behavioral Markers and Indoor Environmental Factors
阿尔茨海默病中的躁动:使用数字行为标记和室内环境因素进行识别和预测
- 批准号:
10404523 - 财政年份:2021
- 资助金额:
$ 161.82万 - 项目类别:
SCC-IRG Track 2: Digital Twin City for Age-friendly Communities - Crowd-biosensing of Environmental Distress for Older Adults
SCC-IRG 第 2 轨道:老年友好型社区的数字孪生城市 - 老年人环境压力的群体生物传感
- 批准号:
2126045 - 财政年份:2021
- 资助金额:
$ 161.82万 - 项目类别:
Standard Grant
Study on multi-task adaptive digital filter for reduction of acoustic echo and environmental noise
减少回声和环境噪声的多任务自适应数字滤波器研究
- 批准号:
21K17773 - 财政年份:2021
- 资助金额:
$ 161.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists