Igniting Life with Sparks of Light: 3D Spatiotemporal Photoactivation of Angiogenesis via Radiational Kinesis (3D SPARK)
用光的火花点燃生命:通过辐射运动进行血管生成的 3D 时空光激活 (3D SPARK)
基本信息
- 批准号:MR/X034976/1
- 负责人:
- 金额:$ 175.02万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Replicating a human organ is a highly complex challenge both structurally and functionally. At the core of this grand challenge lies the critical need for vascularisation and more broadly the need for cellularisation. Cellular systems in our bodies are naturally programmed in a bottom-up fashion where structure is an evolutionary consequence of function. For instance, the need for optimal exchange and transport drives morphogenesis, manifesting itself via dynamic signalling and secretion patterns during vascularisation, alveolarization and the formation of all self-organised tissue compartments. Tissue engineers have attempted the inverse hoping function will also follow form, with a laser focus on the structure problem: the ability to produce acellular architectures such as perfusable networks for transport and microporous scaffolds for cellular aggregation. These top-down engineered matrices are intricate yet static and non-responsive, leaving us with rudimental means of bulk seeding, cellularisation and stimulation, and limiting cell-mediated bottom-up growth and remodelling. Organotypic growth patterns are a dynamic response to physiological needs, driven by the spatiotemporally controlled release of biochemical factors and stimuli, and require extremely soft and degradable cell encapsulated extracellular microenvironments capable of bottom-up remodelling, both of which are currently only afforded at small microfluidic footprints.The 3D SPARK project offers a game-changing solution to large-scale volumetric tissue production via computed axial lithography (CAL) and computed axial stimulation (CAS) - the optical inverses of computed axial tomography (CAT). Volumetric processing challenges conventional wisdom in tissue engineering showing that complex and delicate 3D cellular architectures can be produced all-at-once without relying on slow, sequential processing of biological matter, and that large volumes of manufactured tissue can be accessible at a single cell level without a need for physical manipulation or slow optical scanning. At its core, this revolutionary CAT-inspired method utilises a superposition of 2D angular light projections to construct a 3D spatial distribution of exposure dose, and volumetrically trigger photopolymerization (bioprinting), photorelease (biomodulation) and photoexcitation (imaging) to regulate and monitor key cellular events during tissue development in a photoactive cell-encapsulated hydrogel matrix.With light-mediated volumetric processing and the ability to pattern light intensity in 3D at multiple wavelengths, we introduce a scalable solution to: (1) trigger photopolymerization and manufacture intact vascular structures in such soft (<10 kPa) cell-encapsulated photoactive gels; (2) control the light-induced depletion of chemical species such as oxygen (via radical quenching), and secretion of biochemical factors such as growth factors (via uncaging) directing tissue development across the entire volume; and (3) rapidly image the entire volume to monitor 3D cellularisation concurrent with photomodulation and tissue growth. In our tissue models, larger features such as macrovascular networks are designed and volumetrically printed in a top-down fashion and are internally coated with endothelial cells (ECs). Finer features such as microvascular capillaries are then stimulated with light to emerge and develop from sparsely encapsulated ECs within the printed gel to bridge the macrovascular gaps in a bottom-up fashion. This all-in-one platform goes beyond patterning the physical and chemical properties of the matrix, to enable dynamic manipulation of cellular processes allowing us to accommodate for top-down engineering and bottom-up development simultaneously. Hence, the proposed technology will be the dream tool of tissue engineers giving them spatiotemporal access to large volumes of printed tissue at a single cell level with light in a way never achievable before.
复制人体器官在结构和功能上都是一个非常复杂的挑战。这一重大挑战的核心是血管化的迫切需要,更广泛地说,是细胞化的需要。我们身体中的细胞系统是以自下而上的方式自然编程的,其中结构是功能的进化结果。例如,对最佳交换和运输的需求推动了形态发生,在血管化、肺泡化和所有自组织组织间隔的形成过程中,通过动态信号和分泌模式表现出来。组织工程师已经尝试了逆功能也将遵循形式,激光聚焦于结构问题:产生无细胞结构的能力,如用于运输的可灌流网络和用于细胞聚集的微孔支架。这些自上而下的工程基质是复杂的静态和无反应的,留给我们的是大量种植、细胞化和刺激的基本手段,以及限制细胞介导的自下而上的生长和重塑。器官生长模式是对生理需求的动态反应,由生化因子和刺激的时空受控释放驱动,需要极其柔软和可降解的细胞封装的细胞外微环境,能够自下而上重构,这两种微环境目前都只能在小型微流体足迹中提供。3D Spark项目通过计算轴向光刻(CAL)和计算轴向刺激(CAS)提供了一种改变游戏规则的解决方案,通过计算轴向光刻(CAL)和计算轴向刺激(CAS)-计算轴向断层扫描(CAT)的光学反转。体积处理挑战了组织工程中的传统智慧,表明复杂而精细的3D细胞结构可以一次生产出来,而不需要依赖于缓慢的、顺序的生物物质处理,并且可以在单个细胞水平上访问大量制造的组织,而不需要物理操作或缓慢的光学扫描。在其核心,这种革命性的CAT启发的方法利用2D角度光投影的叠加来构建曝光剂量的3D空间分布,并在体积上触发光聚合(生物打印)、光释放(生物调节)和光激发(成像)来调节和监测光活性细胞包裹的水凝胶基质中组织发育期间的关键细胞事件。通过光介导体处理和在3D中多波长绘制光强度的能力,我们引入了一种可扩展的解决方案:(1)在这种柔软的(<;10kpa)细胞包裹的光活性凝胶中触发光聚合并制造完整的血管结构;(2)控制光引起的氧等化学物质的消耗(通过自由基猝灭),以及生物化学因子(如生长因子)的分泌(通过去老化),以指导整个体积的组织发育;以及(3)快速成像整个体积,以监控与光调节和组织生长同时进行的3D细胞化。在我们的组织模型中,更大的特征,如大血管网络,是以自上而下的方式设计和体积打印的,并在内部涂有内皮细胞(ECs)。然后,微血管等更精细的特征被光刺激,从印刷凝胶中稀疏包裹的内皮细胞中出现和发育,以自下而上的方式弥合大血管缝隙。这一一体化平台不仅可以对基质的物理和化学性质进行图案化处理,还可以实现对细胞过程的动态操作,从而使我们能够同时适应自上而下的工程设计和自下而上的开发。因此,这项拟议的技术将成为组织工程师梦寐以求的工具,使他们能够以一种以前从未实现的方式,在单个细胞水平上利用光来时空访问大量打印组织。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hossein Heidari其他文献
Exact solutions of Fokker–Planck equation via the Nikiforov–Uvarov method
- DOI:
10.1007/s12648-020-01900-6 - 发表时间:
2020-10-29 - 期刊:
- 影响因子:1.700
- 作者:
Hossein Heidari;Hossein Motavalli;Mehdi Rezaei Keramati - 通讯作者:
Mehdi Rezaei Keramati
Advances in photoactivated carbon-based nanostructured materials for targeted cancer therapy
用于靶向癌症治疗的光活化碳基纳米结构材料的进展
- DOI:
10.1016/j.addr.2025.115604 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:17.600
- 作者:
Maryam Eftekharifar;Reza Heidari;Neda Mohaghegh;Alireza Hassani Najafabadi;Hossein Heidari - 通讯作者:
Hossein Heidari
Hossein Heidari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
自支撑LiFe5O8外延薄膜的弯曲磁结构解析与微磁学仿真研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LiFE 项目在非手术住院后老年人群中的衰弱干预效果研究:一项随机对照试验
- 批准号:2021JJ40798
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
运用Life-course方法纵向研究婴幼儿龋发病危险因素
- 批准号:30872875
- 批准年份:2008
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
An innovative urinary drainage system that could reduce NHS CAUTI treatment costs by 10% and increase quality-of-life for men suffering from chronic incontinence
%20创新%20泌尿%20引流%20系统%20%20可以%20减少%20NHS%20CAUTI%20治疗%20成本%20by%2010%%20和%20增加%20生活质量%20为%20男性%20痛苦%20来自%20慢性%20失禁
- 批准号:
10094849 - 财政年份:2024
- 资助金额:
$ 175.02万 - 项目类别:
Collaborative R&D
e-health tools to promote Equality in Quality of Life for childhood to young adulthood cancer patients, survivors and their families - a PanEuropean project supported by PanCare and Harmonic consortia
电子医疗工具可促进儿童到成年癌症患者、幸存者及其家人的生活质量平等 - 这是由 PanCare 和 Harmonic 联盟支持的 PanEuropean 项目
- 批准号:
10098114 - 财政年份:2024
- 资助金额:
$ 175.02万 - 项目类别:
EU-Funded
In-Touch: Implementation of a person-centered palliative care iNtervention To imprOve comfort, QUality of Life and social engagement of people with advanced dementia in Care Homes
In-Touch:实施以人为本的姑息治疗干预措施,以提高护理院中晚期痴呆症患者的舒适度、生活质量和社会参与度
- 批准号:
10102690 - 财政年份:2024
- 资助金额:
$ 175.02万 - 项目类别:
EU-Funded
An Integrated Life-course Approach for Person-centred Solutions and Care for Ageing with Multi-morbidity in the European Regions - STAGE; Stay Healthy Through Ageing
欧洲地区以人为本的解决方案和针对多种疾病的老龄化护理的综合生命全程方法 - STAGE;
- 批准号:
10112787 - 财政年份:2024
- 资助金额:
$ 175.02万 - 项目类别:
EU-Funded
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 175.02万 - 项目类别:
Discovery Projects
Understanding the implications of pandemic delays for the end of life
了解大流行延迟对生命终结的影响
- 批准号:
DP240101775 - 财政年份:2024
- 资助金额:
$ 175.02万 - 项目类别:
Discovery Projects
WEWELL_Women entrepreneurs and their wellbeing: understanding the interplay of gender, identity and life-course
WEWELL_女企业家及其福祉:了解性别、身份和生命历程的相互作用
- 批准号:
EP/Y024362/1 - 财政年份:2024
- 资助金额:
$ 175.02万 - 项目类别:
Fellowship
p53PRISM: Regulation of life-and-death decisions by conformational switches
p53PRISM:构象开关调节生死决定
- 批准号:
EP/Z000823/1 - 财政年份:2024
- 资助金额:
$ 175.02万 - 项目类别:
Fellowship
Bridging fields and expanding research opportunities with the timescale of life
弥合不同领域并扩大研究机会与生命的时间尺度
- 批准号:
2318917 - 财政年份:2024
- 资助金额:
$ 175.02万 - 项目类别:
Continuing Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
- 批准号:
2338394 - 财政年份:2024
- 资助金额:
$ 175.02万 - 项目类别:
Continuing Grant