A novel technology to understand environmental changes in marine sediments

了解海洋沉积物环境变化的新技术

基本信息

  • 批准号:
    MR/X035387/1
  • 负责人:
  • 金额:
    $ 164.44万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

It is well established that the ocean is of enormous importance as it has an impact on climate, weather, global food security, public health and the economy; however, currently the increasing pressure on the ocean results in unseen levels of pollution and alterations of globally important chemical cycles. From the coast to the deep sea the ocean floor is largely covered by loosely aggregated sediments. These sediments form one of the largest bioreactors on Earth and play a crucial role in the state and health of the marine environment as they convert, store and release chemical compounds that affect and control life. For example, they promote the production of potent greenhouse gases and are a major sink for oxygen, but also recycle nutrients and retain pollutants. These biogeochemical reactions lead to steep gradients of chemical compounds in the upper centimetre to decimetre of the sediments, which can be used to understand the processes proceeding in the sediment, their effects on the global biogeochemical cycles and their impact on the marine environment. However, with traditional analysis methods these gradients can often not be properly resolved, both spatially and temporally, and they are often disturbed during the collection of the sediment; in addition, these measurements are costly and time-consuming.In the SANDMAN project I will develop a new instrument to measure gradients of important biogeochemical compounds, such as nutrients (nitrate, phosphate), metals (iron) and carbonate system parameters (total alkalinity) directly within the seafloor sediment, in particular the porewater, by combining cutting-edge Lab-on-Chip sensors with deep sea platform technology that can operate in extreme environments in the oceans over longer periods of time. The Lab-On-Chip sensors, which use miniaturized standard laboratory analyses on an automated microfluidic platform, are developed at the National Oceanography Centre and only recently became available for longer-term applications. These sensors are ideal for measuring the chemistry of porewater directly in the sediment as they are very energy efficient and can be deployed for up to a year and only use very little sample volume, hence the steep gradients in the sediment can easily be resolved. During the SANDMAN project I will lead the sensor adaptation and adjustment of the hardware for conditions in sediments, the design of a fluid sampling system to separate the porewater from the solid phase of the sediment and the combination of these components in a unique seafloor instrument. The functionality of this instrument will first be tested in a controlled laboratory environment, then in a costal test station and afterwards it will be used to answer scientifically important questions about the processes linked to nutrient and metal recycling and carbon degradation in currently underexplored areas such as permeable costal sediments and deep-sea trenches. This unique observing instrument can transform our capacity for the urgently needed benthic biogeochemical analysis from a human-dependent, single-point and costly sampling to a technology-based long-term, high-quality and reliable approach for remote biogeochemical measurements. The SANDMAN system will be widely applicable from the coast to the deep sea and from pole to pole for marine monitoring and industrial applications. Thus it will pave the way to novel synoptic seafloor observations, providing data to support and inform stakeholders, such as government/non-governmental organisations, industries, scientists and the general public, on environmental health and potential hazards.
众所周知,海洋具有巨大的重要性,因为它对气候、天气、全球粮食安全、公共卫生和经济产生影响;然而,目前对海洋的压力越来越大,造成了前所未有的污染程度,并改变了全球重要的化学循环。从海岸到深海,洋底大部分被松散聚集的沉积物所覆盖。这些沉积物形成了地球上最大的生物反应器之一,在海洋环境的状态和健康方面发挥着至关重要的作用,因为它们转化、储存和释放影响和控制生命的化合物。例如,它们促进了强效温室气体的产生,是氧气的主要汇,但也回收营养物质并保留污染物。这些生物地球化学反应导致沉积物上层厘米至分米的化合物梯度很大,可用来了解沉积物中发生的过程及其对全球生物地球化学循环的影响和对海洋环境的影响。然而,采用传统的分析方法,这些梯度往往不能在空间和时间上得到适当的解析,而且在收集沉积物期间常常受到干扰;此外,这些测量方法既昂贵又费时,在SANDMAN项目中,我将研制一种新的仪器来测量重要的地球化学化合物(如营养物)的梯度通过将尖端的芯片实验室传感器与深海平台技术相结合,可以在海洋的极端环境中长时间运行,从而直接测量海底沉积物,特别是孔隙水中的硝酸盐、磷酸盐、金属(铁)和碳酸盐系统参数(总碱度)。芯片实验室传感器在自动化微流体平台上使用小型化标准实验室分析,由国家海洋学中心开发,最近才可用于长期应用。这些传感器非常适合直接测量沉积物中孔隙水的化学成分,因为它们非常节能,可以部署长达一年,并且只使用很少的样品体积,因此可以很容易地解决沉积物中的陡峭梯度。在SANDMAN项目期间,我将领导传感器适应和调整沉积物条件的硬件,设计流体采样系统以将孔隙水从沉积物的固相中分离出来,并将这些组件组合在一个独特的海底仪器中。该仪器的功能将首先在受控的实验室环境中进行测试,然后在沿海测试站进行测试,之后将用于回答与目前未充分勘探的区域(如可渗透的沿海沉积物和深海海沟)中的养分和金属再循环以及碳降解有关的重要科学问题。这一独特的观测仪器可以改变我们进行迫切需要的海底生物地球化学分析的能力,从依赖人类的单点和昂贵的取样转变为以技术为基础的长期、高质量和可靠的远程生物地球化学测量方法。SANDMAN系统将广泛适用于从海岸到深海,从一个极点到另一个极点的海洋监测和工业应用。因此,它将为新的海底天气观测铺平道路,提供数据,以支持和告知利益攸关方,如政府/非政府组织,工业,科学家和公众,关于环境健康和潜在危害。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Lichtschlag其他文献

The dynamics of pore water in subsurface sediments at the site of controlled CO2 release experiment
CO2 控制释放实验现场地下沉积物孔隙水动态
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ayumi Tsukasaki;Natalie Hicks;Peter Taylor;Masahiro Suzumura;Anna Lichtschlag;Henrik Stahl;Rachael H. James
  • 通讯作者:
    Rachael H. James
Factors influencing microplastic abundances in the sediments of a seagrass-dominated tropical atoll
  • DOI:
    10.1016/j.envpol.2024.124483
  • 发表时间:
    2024-09-15
  • 期刊:
  • 影响因子:
  • 作者:
    Freya Radford;Alice A. Horton;Stacey Felgate;Anna Lichtschlag;James Hunt;Valdemar Andrade;Richard Sanders;Claire Evans
  • 通讯作者:
    Claire Evans
Deep-sea drilling of the 13°30′ N oceanic core complex: Assessing links between fluid flow, metal enrichment and seafloor massive sulfide deposit formation near Semenov-1
北纬 13°30′海洋核心复合体的深海钻探:评估塞米诺夫-1 附近流体流动、金属富集与海底块状硫化物矿床形成之间的联系
  • DOI:
    10.1016/j.lithos.2024.107921
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Andrew J. Martin;Bramley J. Murton;Christopher J. MacLeod;John W. Jamieson;Isobel I. Yeo;Sven Petersen;Katie A. McFall;Simon Allerton;Anna Lichtschlag;Christian Bishop;Acer Figueroa;Szu-Ying Lai
  • 通讯作者:
    Szu-Ying Lai
サハリン島沖の海底表層型ガスハイドレート
萨哈林岛沿岸海底表面天然气水合物
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ayumi Tsukasaki;Natalie Hicks;Peter Taylor;Masahiro Suzumura;Anna Lichtschlag;Henrik Stahl;Rachael H. James;八久保 晶弘
  • 通讯作者:
    八久保 晶弘
スラムから学ぶこと:ニュー・アーバン・アジェンダに寄せて
贫民窟的教训:新的城市议程
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ayumi Tsukasaki;Natalie Hicks;Peter Taylor;Masahiro Suzumura;Anna Lichtschlag;Henrik Stahl;Rachael H. James;八久保 晶弘;志摩憲寿
  • 通讯作者:
    志摩憲寿

Anna Lichtschlag的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Lichtschlag', 18)}}的其他基金

A novel approach to measure nutrient fluxes in permeable sediments
测量可渗透沉积物中养分通量的新方法
  • 批准号:
    NE/X012654/1
  • 财政年份:
    2022
  • 资助金额:
    $ 164.44万
  • 项目类别:
    Research Grant
New capabilities for measuring organic matter degradation in the deepest oceans on Earth
测量地球最深海洋有机物降解的新功能
  • 批准号:
    NE/V008870/1
  • 财政年份:
    2020
  • 资助金额:
    $ 164.44万
  • 项目类别:
    Research Grant

相似国自然基金

Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
PET/MR多模态分子影像在阿尔茨海默病炎症机制中的研究
  • 批准号:
    82372073
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
Journal of Computer Science and Technology
  • 批准号:
    61224001
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
微制作技术构建组织工程神经支架的研究
  • 批准号:
    81071260
  • 批准年份:
    2010
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
Journal of Materials Science & Technology
  • 批准号:
    51024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Computer Science and Technology
  • 批准号:
    61040017
  • 批准年份:
    2010
  • 资助金额:
    4.0 万元
  • 项目类别:
    专项基金项目
对虾白斑综合症病毒(WSSV)感染相关基因及其细胞受体的筛选和鉴定
  • 批准号:
    30700618
  • 批准年份:
    2007
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Applying Spatial Covariance to Understand Human Variation in Genetic Disease
应用空间协方差来了解遗传疾病的人类变异
  • 批准号:
    10734426
  • 财政年份:
    2023
  • 资助金额:
    $ 164.44万
  • 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
  • 批准号:
    10588092
  • 财政年份:
    2023
  • 资助金额:
    $ 164.44万
  • 项目类别:
Using Momentary Measures to Understand Physical Activity Adoption and Maintenance among Pacific Islanders in the United States
使用临时措施了解美国太平洋岛民体育活动的采用和维持情况
  • 批准号:
    10737528
  • 财政年份:
    2023
  • 资助金额:
    $ 164.44万
  • 项目类别:
Probing nano/bio interactions to understand and overcome biological barriers limiting nanomedicine
探索纳米/生物相互作用,以了解和克服限制纳米医学的生物障碍
  • 批准号:
    10623828
  • 财政年份:
    2023
  • 资助金额:
    $ 164.44万
  • 项目类别:
Characterizing the underlying population code to understand the functional organization of the hippocampus and the lateral hypothalamus
表征潜在的群体代码以了解海马和下丘脑外侧的功能组织
  • 批准号:
    10828039
  • 财政年份:
    2023
  • 资助金额:
    $ 164.44万
  • 项目类别:
Use of Digital Phenotyping to Understand Digital Media Influence on Adolescent Substance Use
使用数字表型来了解数字媒体对青少年药物使用的影响
  • 批准号:
    10661933
  • 财政年份:
    2023
  • 资助金额:
    $ 164.44万
  • 项目类别:
Leveraging Longitudinal Data and Informatics Technology to Understand the Role of Bilingualism in Cognitive Resilience, Aging and Dementia
利用纵向数据和信息学技术了解双语在认知弹性、衰老和痴呆中的作用
  • 批准号:
    10583170
  • 财政年份:
    2023
  • 资助金额:
    $ 164.44万
  • 项目类别:
Using Computational Neuroimaging and Extended Smartphone Assessment to Understand the Pathways Linking Threat-Related Brain Circuits to Alcohol Misuse Across Adulthood
使用计算神经影像和扩展智能手机评估来了解威胁相关大脑回路与成年期酒精滥用之间的联系途径
  • 批准号:
    10584969
  • 财政年份:
    2023
  • 资助金额:
    $ 164.44万
  • 项目类别:
Multilevel strategies to understand and modify the role of structural and environmental context on HIV inequities for sexual and gender minorities of color
了解和改变结构和环境背景对有色人种和性别少数群体艾滋病毒不平等的作用的多层次战略
  • 批准号:
    10594549
  • 财政年份:
    2022
  • 资助金额:
    $ 164.44万
  • 项目类别:
What causes low back pain to flare: Has a major opportunity to understand back pain been missed?
是什么导致腰痛发作:是否错过了了解背痛的重要机会?
  • 批准号:
    10709521
  • 财政年份:
    2022
  • 资助金额:
    $ 164.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了