Development of PLGA microsphere formulations for the sustained release of growth factors

开发用于缓释生长因子的PLGA微球制剂

基本信息

  • 批准号:
    MR/Y033779/1
  • 负责人:
  • 金额:
    $ 1.19万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Osteoarthritis (OA) is a common joint disorder that carries inflammation, degeneration of the cartilaginous surface of joints that allow smooth joint movement, and eventually, chronic pain and locomotor disability. Current OA treatments aim to alleviate the symptoms, but to date, there are no effective treatments to cure or prevent the condition. Recently, researchers have resorted to tissue engineering in an attempt to reform the degraded tissue, but no successful regeneration of native cartilage has been yet achieved, suggesting that current strategies miss a relevant step.Most cartilage tissue engineering approaches focus on selecting a stem cell population and on developing a biomaterial that serves as a 3D scaffold for tissue regeneration, but lesser attention is paid on giving inductive cues for cells to correctly reform the tissue. This fact is particularly important in tissues with complex structures, such as cartilage, where asymmetrical gradients of growth factors (GF) are present and must be maintained for stem cell survival and correct cell differentiation.External GF injection into joint cavities is not sufficient, as proteins quickly wash away in synovial fluid, and recurrent supplementations are impractical in clinical practice. Therefore, the encapsulation of GFs in biodegradable microspheres (MSs) and their sustained release within biomaterial scaffolds is a much more feasible approach for the generation and maintenance of GF gradients.Pouya Rezai's lab has vast expertise on the generation of MSs by microfluidics. Microfluidics studies the behaviour of fluids at the microscale and requires specialized knowledge, expertise and expensive equipment that very few laboratories have access to. Harnessing microfluidics for the synthesis of microparticles allows full control in microparticle properties (i.e diameter size, number of layers, high efficiency of molecule encapsulation, etc.) that would be unattainable otherwise.Eileen Gentleman's lab has developed a photocrossinkable hyaluronan-based biomaterial for the repair of damaged cartilage. We have demonstrated that this biomaterial is injectable and can sustain cartilage cells, postulating it as an ideal system for clinical in situ tissue engineering of cartilage.Here, we propose the use of poly(lactic-co-glycolic acid) (PLGA), a FDA-approved biodegradable polymer, to synthesise different MS formulations for GF sustained release. MSs can be used in concert with biomaterials and stem cells for the regeneration of cartilage in the context of OA. Thus, we will overcome current limitations on cartilage regenerative medicine and bring about the next generation of tissue engineering approaches.To achieve that, we will first generate MSs of different sizes (ranging from nanometric to micrometric diameters) and different layers (mono or bilayered MSs). Then, we will assess which formulations are suitable to be used along with biomaterials and with cells. Lastly, we will encapsulate model proteins in relevant MS formulations to investigate their degradation and release kinetics under physiological conditions, and subsequently, to figure what formulations are more adequate to replicate cartilage natural GF gradients.The result of this multidisciplinary project is the fulfilment of the current limitation in tissue engineering. This opportunity will bring us closer to a successful therapy in the context of regenerative medicine. The project not only brings in concert two completely different disciplines (tissue engineering, from Gentleman lab, and microfluidics and microparticle generation, from Rezai lab) into the development of a novel, revolutionizing and promising approach, but also sets the way for a new fruitful collaboration between Canadian and UK-based laboratories.
骨关节炎(OA)是一种常见的关节疾病,其携带炎症、允许平滑关节运动的关节软骨表面的退化,并最终导致慢性疼痛和运动障碍。目前的OA治疗旨在缓解症状,但迄今为止,还没有有效的治疗方法来治愈或预防这种疾病。近年来,研究人员采用组织工程的方法试图对退化的组织进行改革,但还没有成功地实现天然软骨的再生,这表明目前的策略错过了相关的步骤。大多数软骨组织工程方法集中在选择干细胞群和开发作为组织再生3D支架的生物材料,但较少关注给予细胞正确改革组织的诱导线索。这一事实在具有复杂结构的组织中特别重要,例如软骨,其中存在不对称的生长因子(GF)梯度,并且必须维持生长因子梯度以使干细胞存活和正确的细胞分化。将外部GF注射到关节腔中是不够的,因为蛋白质在滑液中很快被冲走,并且复发性关节炎在临床实践中是不切实际的。因此,将GF封装在生物可降解微球(MS)中并在生物材料支架内持续释放是一种更可行的方法,用于生成和维持GF梯度。Pouya Rezai的实验室在通过微流体生成MS方面拥有丰富的专业知识。微流体学在微观尺度上研究流体的行为,需要专业知识,专业知识和昂贵的设备,很少有实验室能够获得。利用微流体技术合成微粒允许完全控制微粒性质(即直径大小、层数、分子包封的高效率等)。Eileen Gentleman的实验室已经开发出一种可光交联的透明质酸生物材料,用于修复受损的软骨。我们已经证明,这种生物材料是可注射的,可以维持软骨细胞,假定它作为一个理想的系统,为临床原位组织工程的软骨。在这里,我们建议使用聚(乳酸-共-乙醇酸)(PLGA),FDA批准的可生物降解的聚合物,合成不同的MS配方GF缓释。MS可以与生物材料和干细胞一起用于OA背景下的软骨再生。因此,我们将克服目前软骨再生医学的局限性,并带来下一代的组织工程方法。为了实现这一目标,我们将首先生成不同尺寸(从纳米到微米直径)和不同层(单层或双层MS)的MS。然后,我们将评估哪些配方适合与生物材料和细胞一起沿着使用。最后,我们将在相关的MS配方封装模型蛋白质,以研究它们在生理条件下的降解和释放动力学,并随后计算出什么配方更适合复制软骨天然GF gradients. Results的结果是目前的组织工程的限制的实现。这个机会将使我们更接近再生医学背景下的成功疗法。该项目不仅将两个完全不同的学科(来自Gentleman实验室的组织工程和来自Rezai实验室的微流体和微粒生成)整合到一种新颖的,革命性的和有前途的方法的开发中,而且还为加拿大和英国实验室之间新的富有成效的合作铺平了道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eileen Gentleman其他文献

A novel tissue-engineered regenerative strategy for targeting degenerative diseases of the TMJ
  • DOI:
    10.1016/j.bjoms.2016.11.262
  • 发表时间:
    2016-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Christoph Salzlechner;Leandros-Vassilios Vassiliou;Eileen Gentleman;Kathleen Fan
  • 通讯作者:
    Kathleen Fan
THU-320-YI The pan-cyclophilin inhibitor rencofilstat exhibits therapeutic anti-fibrotic effects in human relevant models of alcohol-related liver disease via extracellular matrix remodelling
  • DOI:
    10.1016/s0168-8278(24)00677-9
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Una Rastovic;Sara Campinoti;Lai Wei;Bruna Almeida;Sergio Bozzano;Ramin Amiri;Nicola Harris;Omolola Ajayi;Tsin Shue Koay;Caoimhe Kerins;Fiona Kenny;Ane Zamalloa;Lissette Adofina;Rosa Miquel;Yoh Zen;Parthi Srinivasan;Krishna Menon;Nigel Heaton;Camilla Luni;Eileen Gentleman
  • 通讯作者:
    Eileen Gentleman
Inflammation-related collagen fibril destruction contributes to temporomandibular joint disc displacement via NF-κB activation
炎症相关的胶原纤维破坏通过 NF-κB 激活导致颞下颌关节盘移位
  • DOI:
    10.1038/s41368-025-00352-0
  • 发表时间:
    2025-04-17
  • 期刊:
  • 影响因子:
    12.200
  • 作者:
    Shengjie Cui;Yanning Guo;Yu Fu;Ting Zhang;Jieni Zhang;Yehua Gan;Yanheng Zhou;Yan Gu;Eileen Gentleman;Yan Liu;Xuedong Wang
  • 通讯作者:
    Xuedong Wang
Local depletion of proteoglycans mediates cartilage tissue repair in an emex vivo/em integration model
  • DOI:
    10.1016/j.actbio.2022.06.032
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
    9.600
  • 作者:
    Nicholas Groth Merrild;Viktoria Holzmann;Yoanna Ariosa-Morejon;Peter A. Faull;Jennifer Coleman;William B. Barrell;Gloria Young;Roman Fischer;Daniel J. Kelly;Owen Addison;Tonia L. Vincent;Agamemnon E. Grigoriadis;Eileen Gentleman
  • 通讯作者:
    Eileen Gentleman
Label-free 3D molecular imaging of living tissues using Raman spectral projection tomography
使用拉曼光谱投影断层扫描对活组织进行无标记三维分子成像
  • DOI:
    10.1038/s41467-024-51616-y
  • 发表时间:
    2024-09-09
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Elzbieta Stepula;Anders R. Walther;Magnus Jensen;Dev R. Mehrotra;Mu H. Yuan;Simon V. Pedersen;Vishal Kumar;Eileen Gentleman;Michael B. Albro;Martin A. B. Hedegaard;Mads S. Bergholt
  • 通讯作者:
    Mads S. Bergholt

Eileen Gentleman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eileen Gentleman', 18)}}的其他基金

Designing synthetic matrices for enhanced organoid development: A step towards better disease understanding
设计合成基质以增强类器官发育:更好地了解疾病的一步
  • 批准号:
    MR/Y033760/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Research Grant
Deconstructing the fibrotic microenvironment in Crohn's disease to promote tissue healing
解构克罗恩病的纤维化微环境,促进组织愈合
  • 批准号:
    MR/X008789/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Research Grant
Development of a biophysical toolkit to monitor and manipulate matrix remodelling in organoid based models of human disease
开发生物物理工具包来监测和操纵基于类器官的人类疾病模型中的基质重塑
  • 批准号:
    EP/V04723X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Research Grant

相似国自然基金

C3/PLGA/BP可注射水凝胶的构建及其促 进种植体周围炎骨再生的作用和机制研 究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
3D打印负载DOX-LF的PLGA双相复合支架材料修复炎性牙周组织缺损及其机制研究
  • 批准号:
    2025JJ70419
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
负载生长因子的PLGA缓释微球修复下颌骨缺损的实验研究
  • 批准号:
    2025JJ70715
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于SpyTag-SpyCatcher系统和PLGA微球的肺炎支原体单剂量吸入干粉疫苗的制备及保护性评估
  • 批准号:
    2025JJ50650
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
RVG29-PEG-PLGA纳米粒子递送siRNA抑制ATX蛋白表达改善脑梗死后重复经颅磁刺激(rTMS)疗效的作用机制研究
  • 批准号:
    2025JJ90276
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
新型载 COR 磁性 PLGA 纳米粒联合超声辐照 保护糖尿病肾病足细胞的研究
  • 批准号:
    HDMY24H280025
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
低温 3D 打印 PLGA/β-TCP/Zn 支架负载干祖细胞亚群外泌 体促进骨缺损修复的作用研究
  • 批准号:
    2024JJ9533
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
茶黄素单体PLGA纳米粒对脂多糖诱导的肺巨噬细胞炎症反应的调控 及机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
PLGA支架拓扑结构激活牙髓干细胞YAP信号启动内质网应激形成管状牙本质的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
基于 BMP-2 调控的 MSTN 甲基化修饰探究续 骨活血汤联合 PASP-PLGA 微胶囊外泌体促 进肩袖损伤腱骨愈合的机制
  • 批准号:
    TGY24H270036
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Native PLGA nanoparticles attenuate aggregation, phosphorylation and internalization of tau protein: potential implication in the treatment of Alzheimer's disease
天然 PLGA 纳米粒子减弱 tau 蛋白的聚集、磷酸化和内化:在阿尔茨海默病治疗中的潜在意义
  • 批准号:
    487617
  • 财政年份:
    2023
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Operating Grants
Injectable 3-month buprenorphine PLGA microparticle formulation
可注射 3 个月丁丙诺啡 PLGA 微粒制剂
  • 批准号:
    10682808
  • 财政年份:
    2023
  • 资助金额:
    $ 1.19万
  • 项目类别:
Transdermal DDS for the treatment of intractable skin diseases using PLGA-PEG block copolymers
使用 PLGA-PEG 嵌段共聚物的透皮 DDS 治疗顽固性皮肤病
  • 批准号:
    22K06553
  • 财政年份:
    2022
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fibrin-targeting PLGA microspheres for prevention of post-operative peritoneal adhesions; a pre-clinical proof of concept study
纤维蛋白靶向 PLGA 微球用于预防术后腹膜粘连;
  • 批准号:
    MR/W019310/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Research Grant
Novel platform for sustained release of biopharmaceucal by using porous PLGA particle
利用多孔PLGA颗粒缓释生物药物的新型平台
  • 批准号:
    20K07203
  • 财政年份:
    2020
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Peptide Crosslinked Poly(Lactide-co-Glycolide) (PLGA) nanoparticles for drug depot formulations
用于药物储库制剂的肽交联聚丙交酯-乙交酯 (PLGA) 纳米颗粒
  • 批准号:
    531032-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Engage Grants Program
ロソシアニン封入PLGAナノ粒子を用いたホウ素捕捉中性子療法による口腔癌治療
使用玫瑰花青封装的 PLGA 纳米颗粒进行硼俘获中子疗法治疗口腔癌
  • 批准号:
    18K09795
  • 财政年份:
    2018
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PLGA nanoparticles with physicochemical properties suitable for overcoming the barrier function of the stratum corneum
PLGA纳米粒子具有适合克服角质层屏障功能的理化特性
  • 批准号:
    18K14888
  • 财政年份:
    2018
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Formulation and testing of PLGA-DS as an anti-cancer therapy for FDA and EMA new drug application
PLGA-DS作为抗癌疗法的配制和测试用于FDA和EMA新药申请
  • 批准号:
    104022
  • 财政年份:
    2018
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Collaborative R&D
Development of layered bio-degradable PLGA membranes
层状可生物降解PLGA膜的开发
  • 批准号:
    17K11778
  • 财政年份:
    2017
  • 资助金额:
    $ 1.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了