Understanding Mechanisms Driving Lung Disease Caused by Environmental Particulate Matter

了解环境颗粒物引起肺部疾病的机制

基本信息

  • 批准号:
    NC/X002101/1
  • 负责人:
  • 金额:
    $ 25.76万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Collectively, respiratory diseases are the leading cause of death worldwide. As a consequence respiratory research has increased by 500% and animal models have supported approximately 20% of this research. More than 900,000 mice have been used in the last decade alone to help understand human respiratory health, however, the physiological and anatomic differences between the human and mouse lungs have made it difficult to translate research findings into human therapies. Inhalation research focuses on the effect of inhaled chemicals, particles, bacteria, viruses, drug delivery systems and pollution in both healthy lung and diseased lungs. The most widely used human specific models of the human lung are cell-based models that focus on lung epithelial cells, the cells that make up the surface of the lungs. While these models are useful to model the response of epithelium to inhaled substances, the whole lung response is extremely important and encompasses complex cell-to-cell interactions and signalling, immune cells and extracellular matrix modifications that currently only mouse models can fully replicate, hence their over-use.We will address this gap in model platforms by creating a multi-cell type, immune competent model of human lung alveoli that is animal-free, capable of stretching and applicable to many areas of respiratory research. To achieve this we will use stem cell derived type II alveoli epithelial cells with macrophages, fibroblasts and endothelial cells in a synthetic hydrogel developed by our industrial partner Manchester BIOGEL. We will demonstrate application of the model to understand how atmospheric particulate matter, the most significant environmental pollutant in the world, affects lung health. The objectives below will provide an opportunity for a "next-generation" model of the human lung alveoli, capable of modelling epithelial response, fibrosis as well as that of the immune system and could provide important mechanistic, diagnostic and therapeutic information across many areas of respiratory research. 1): Combine hIPSC derived lung cell types into synthetic animal-free hydrogels.We will bring together our stem cell derived type II alveoli epithelial cells, with macrophages, fibroblasts and endothelial cells in a synthetic hydrogel to generate a 3D multi-cell-type, immune competent organoid model of the human lung alveoli. We will characterise structure of the organoid in different hydrogel formulations that mimic fibrosis both with and without stretch forces. We will then compare and validate individual cell behaviour to human precision cut lung slices cultured under equivalent conditions. 2) Understand the impact of particulate matter on lung alveoli tissueTo further demonstrate application of the model we will expose the alveoli organoids to environmental particulate matter in different hydrogel and stretch characteristics identified in Obj 1. We will then characterise the response of each cell type and compare and validate the response using human precision cut lung slices as in Obj 1. 3) Educate and train new users in development and manipulation of hIPSC derived alveoli organoids.We will host a conference focussed on current animal free models of human health and disease to educate current and future research leaders in use and development of animal-free models of human health. We will also host a 1-week training course for researchers that would like to adopt and use our model for their own research purposes.Together these objective will create a "next generation" model of human alveoli tissue applicable that could reduce and replace animal models across many different respiratory diseases. Importantly, there will be training opportunities provided to other researchers that will allow them to adopt and modify the model to their own experimental needs, further enhancing the possibility that the platform will have a positive impact in reducing animal use in research.
总的来说,呼吸道疾病是全世界死亡的主要原因。因此,呼吸系统研究增加了500%,动物模型支持了大约20%的研究。仅在过去十年中,就有超过90万只小鼠被用于帮助了解人类呼吸系统健康,然而,人类和小鼠肺部之间的生理和解剖差异使得很难将研究结果转化为人类疗法。吸入研究的重点是吸入的化学物质,颗粒,细菌,病毒,药物输送系统和污染在健康肺和病变肺中的影响。最广泛使用的人类肺的人类特异性模型是基于细胞的模型,其集中于肺上皮细胞,即构成肺表面的细胞。虽然这些模型可用于模拟上皮对吸入物质的反应,但整个肺部反应极其重要,包括复杂的细胞与细胞相互作用和信号传导、免疫细胞和细胞外基质修饰,目前只有小鼠模型才能完全复制,因此过度使用。我们将通过创建多细胞类型,人肺泡的免疫活性模型,其不含动物,能够伸展并适用于呼吸研究的许多领域。为了实现这一目标,我们将在我们的工业合作伙伴曼彻斯特BIOGEL开发的合成水凝胶中使用干细胞衍生的II型肺泡上皮细胞与巨噬细胞,成纤维细胞和内皮细胞。我们将展示该模型的应用,以了解大气颗粒物,世界上最重要的环境污染物,如何影响肺部健康。以下目标将为人类肺泡的“下一代”模型提供机会,该模型能够模拟上皮反应、纤维化以及免疫系统,并且可以在呼吸研究的许多领域提供重要的机制、诊断和治疗信息。1)、联合收割机将hIPSC衍生的肺细胞类型结合到合成的无动物水凝胶中。我们将在合成水凝胶中将我们的干细胞衍生的II型肺泡上皮细胞与巨噬细胞、成纤维细胞和内皮细胞结合在一起,以生成人肺泡的3D多细胞类型、免疫活性类器官模型。我们将在不同的水凝胶配方中模拟纤维化,有和没有拉伸力的类器官的结构。然后,我们将比较和验证单个细胞行为与在同等条件下培养的人类精密切割肺切片。2)了解颗粒物质对肺泡组织的影响为了进一步证明模型的应用,我们将在目标1中确定的不同水凝胶和拉伸特性中将肺泡类器官暴露于环境颗粒物质。然后,我们将对每种细胞类型的响应进行验证,并使用目标1中的人体精密切割肺切片比较和验证响应。3)教育和培训新用户开发和操作hIPSC衍生的肺泡类器官。我们将举办一次会议,重点关注当前人类健康和疾病的无动物模型,以教育当前和未来的研究领导者使用和开发人类健康的无动物模型。我们还将举办为期一周的培训课程,为那些希望采用和使用我们的模型用于自己的研究目的的研究人员提供培训。这些目标将共同创建适用的“下一代”人类肺泡组织模型,可以减少和取代许多不同呼吸道疾病的动物模型。重要的是,将为其他研究人员提供培训机会,使他们能够根据自己的实验需求采用和修改模型,进一步提高该平台对减少研究中动物使用产生积极影响的可能性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Hannan其他文献

Nicholas Hannan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Hannan', 18)}}的其他基金

bREATH-EASy: UNDERSTANDING THE ROLE OF INFECTION & EXTRACELLULAR MATRIX IN IDIOPATHIC PULMONARY FIBROSIS USING STEM CELL DERIVED ALVEOLAR CELLS
轻松呼吸:了解感染的作用
  • 批准号:
    MR/S009930/1
  • 财政年份:
    2019
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Research Grant

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Elucidation of the molecular mechanisms driving the co-evolution between red tide-causing algae and viruses
阐明驱动赤潮藻类与病毒共同进化的分子机制
  • 批准号:
    23K14265
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the synaptic and circuit mechanisms underlying a plasticity-driving instructive signal
揭示可塑性驱动指导信号背后的突触和电路机制
  • 批准号:
    10686592
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
Mechanisms of Cellular Senescence Driving Intervertebral Disc Aging through Local Cell Autonomous and Systemic Non-Cell Autonomous Processes
细胞衰老通过局部细胞自主和全身非细胞自主过程驱动椎间盘老化的机制
  • 批准号:
    10635092
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
Molecular mechanisms driving therapy-induced lineage plasticity
驱动治疗诱导的谱系可塑性的分子机制
  • 批准号:
    10730635
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
Identification of the molecular and cellular mechanisms driving cardiac fibrosis: A novel ex-vivo approach to target identification and validation
驱动心脏纤维化的分子和细胞机制的鉴定:一种新颖的体外靶标鉴定和验证方法
  • 批准号:
    NC/X001733/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Training Grant
Polarity mechanisms driving complex morphogenesis
驱动复杂形态发生的极性机制
  • 批准号:
    10712428
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
Proximal and ultimate mechanisms driving animal aggressive contests: a gene expression and game theory approach
驱动动物攻击性竞赛的近端和终极机制:基因表达和博弈论方法
  • 批准号:
    23K14229
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Dissecting the regulatory mechanisms driving trophoblast cell fate
剖析驱动滋养层细胞命运的调节机制
  • 批准号:
    EP/Y009924/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Research Grant
Understanding Mechanisms Driving Lung Disease Caused by Environmental Particulate Matter
了解环境颗粒物引起肺部疾病的机制
  • 批准号:
    2886327
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Studentship
Defining the autoimmune mechanisms driving human MOG antibody disease pathology
定义驱动人类 MOG 抗体疾病病理学的自身免疫机制
  • 批准号:
    10748070
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了