Magma Dynamics at Persistently Degassing Basaltic Volcanoes: A Novel Approach to Linking Volcanic Gases and Magmatic Volatiles within a Physical Model

玄武岩火山持续脱气的岩浆动力学:一种在物理模型中连接火山气体和岩浆挥发物的新方法

基本信息

  • 批准号:
    NE/F005342/1
  • 负责人:
  • 金额:
    $ 10.93万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

Volcanoes are the principal source of non-anthropogenic gases and aerosols injected into the atmosphere. A significant proportion of this gas comes not from volcanoes that are actually erupting, but from volcanoes that are quietly bubbling their gas to the atmosphere, or 'degassing persistently'. Many basaltic volcanoes can degas in this way for many years without a major eruption. Such volcanoes are often monitored for their gas chemistry and gas flux as well as a host a host of geophysical parameters. These monitoring data contain clues as to the underground movement of the magma that is degassing. In effect, the gas record affords us a window into the inner workings of magma chambers, which are not accessible by any other means. Making the link, however, between subterranean magma dynamics and magma gas records is not straightforward. It requires not only an understanding of the fundamental fluid dynamics of the mechanisms by which magma releases its gas, but also knowledge on the pressure-dependent solubility of the different gas species measured at the surface. The aim of this proposal is to develop fluid dynamical models of the convective processes thought to be responsible for magma degassing and to apply these results to two of the best monitored passively degassing volcanoes in the world, Masaya in Nicaragua, and Stromboli in Italy. The fluid mechanical models build on preliminary work at Bristol concerning the convective motion of gas-bearing magma within an underground chamber connected to the surface by a pipe. As the magma ascends it loses gas, becomes denser and sinks back down. The interaction between ascending gassy magma and sinking degassed magma exerts a key control on how degassing occurs and how it evolves with time. The process, although conceptually quite straightforward, is not easy to model because it involves interplay between convection and pressure-dependent gas loss, which have not previously been combined. The models, which are developed through a combination of analogue experiments and mathematics, can be used to make predictions about the composition of the gas emitted and how it varies with time. These can then be compared to the record from a well-monitored persistently degassing volcano. To do this we require a record not just of gas flux, but also of gas chemistry, for all of the major volcanic gas species. There are relatively few volcanoes at which such data are available because of the difficulty of analysing H2O and CO2, which are not only the most important volcanic gases, but are also abundant in the atmosphere. In order to measure these species we require a persistently degassing volcano with an accessible crater across which gas chemistry can be measured with minimal atmospheric interference. Masaya and Stromboli are ideal for that purpose. Data from Stromboli will be acquired though our collaboration with Project Partners in Italy, while we plan 3 new field campaigns to collect data at Masaya. In order that the fluid dynamical models are directly applicable to Masaya we will use high temperature and pressure experimental techniques to determine the solubility of the principal gas species, H2O, CO2, SO2 and HCl, in a sample of Masaya basalt. In order to constrain the initial gas budget of the Masaya magma we will analyse tiny quenched droplets of basalt liquid, known as melt inclusions, contained in crystals of olivine and plagioclase. These two types of additional information, solubility and initial gas inventory, are not currently available for Masaya, which makes any modelling of the degassing process rather difficult. The project brings together experts in volcanic and experimental petrology, volcano monitoring, gas chemistry and fluid mechanics. The ultimate objective of this research is a better understanding of how volcanoes work, with particular emphasis on how to interpret gas chemistry and its evolution with time from the point of view of impending volcanic hazard.
火山是注入大气中的非人为气体和气溶胶的主要来源。这种气体的很大一部分不是来自实际喷发的火山,而是来自那些正在悄悄地将气体冒泡到大气中或“持续排气”的火山。许多玄武岩火山可以通过这种方式脱气多年而不会发生大规模喷发。通常对此类火山的气体化学和气体通量以及大量地球物理参数进行监测。 These monitoring data contain clues as to the underground movement of the magma that is degassing.实际上,气体记录为我们提供了一扇了解岩浆室内部运作的窗口,而这是通过任何其他方式无法进入的。然而,在地下岩浆动力学和岩浆气体记录之间建立联系并不简单。它不仅需要了解岩浆释放气体机制的基本流体动力学,还需要了解在地表测量的不同气体种类的压力依赖性溶解度。该提案的目的是开发被认为负责岩浆脱气的对流过程的流体动力学模型,并将这些结果应用于世界上监测最好的两座被动脱气火山:尼加拉瓜的马萨亚火山和意大利的斯特龙博利火山。流体力学模型建立在布里斯托尔的初步工作基础上,该工作涉及通过管道与地面相连的地下室内含气岩浆的对流运动。当岩浆上升时,它会失去气体,变得更稠密并下沉。上升的含气岩浆和下沉的脱气岩浆之间的相互作用对脱气如何发生以及如何随时间演变发挥关键控制作用。该过程虽然在概念上非常简单,但并不容易建模,因为它涉及对流和压力相关的气体损失之间的相互作用,而这两者之前尚未结合起来。这些模型是通过模拟实验和数学相结合而开发的,可用于预测排放气体的成分及其随时间的变化。然后可以将这些记录与监控良好的持续排气火山的记录进行比较。为此,我们不仅需要记录所有主要火山气体种类的气体通量,还需要记录气体化学。由于分析 H2O 和 CO2 很困难,可获得此类数据的火山相对较少,而 H2O 和 CO2 不仅是最重要的火山气体,而且在大气中也含量丰富。为了测量这些物种,我们需要一座持续脱气的火山,并有一个可进入的火山口,可以在最小的大气干扰下测量气体化学。 Masaya 和 Stromboli 是实现此目的的理想选择。我们将通过与意大利项目合作伙伴的合作获取斯特龙博利的数据,同时我们计划开展 3 个新的实地活动以在马萨亚收集数据。为了使流体动力学模型直接适用于 Masaya,我们将使用高温高压实验技术来确定 Masaya 玄武岩样品中主要气体种类(H2O、CO2、SO2 和 HCl)的溶解度。为了限制马萨亚岩浆的初始气体预算,我们将分析橄榄石和斜长石晶体中含有的微小玄武岩液体淬火液滴,称为熔体包裹体。 Masaya 目前无法获得这两类附加信息(溶解度和初始气体库存),这使得脱气过程的任何建模都相当困难。该项目汇集了火山和实验岩石学、火山监测、气体化学和流体力学方面的专家。这项研究的最终目标是更好地了解火山的工作原理,特别强调如何从即将发生的火山灾害的角度解释气体化学及其随时间的演变。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-resolution size distributions and emission fluxes of trace elements from Masaya volcano, Nicaragua
尼加拉瓜马萨亚火山微量元素的高分辨率尺寸分布和排放通量
  • DOI:
    10.1029/2012jb009487
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Martin R
  • 通讯作者:
    Martin R
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clive Oppenheimer其他文献

Disparate impacts of the Eldgjá and Laki flood-lava eruptions
Eldgja 和 Laki 洪水熔岩喷发的不同影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Conner A. G. Morison;Clive Oppenheimer;Thorvaldur Thordarson;Anthony J. Newton;W. Moreland;Andy Dugmore
  • 通讯作者:
    Andy Dugmore
Distribution of Partial Melt Beneath Changbaishan/Paektu Volcano, China/Democratic People's Republic of Korea
  • DOI:
    https://doi.org/10.1029/2019GC008461
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
  • 作者:
    James O. S. Hammond;Jianping Wu;Kyong-song Ri;Wei Wei;Jong-Nam Yu;Clive Oppenheimer
  • 通讯作者:
    Clive Oppenheimer
Eruptions that Shook the World: Contents
  • DOI:
    10.1017/cbo9780511978012
  • 发表时间:
    2004-03
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Clive Oppenheimer
  • 通讯作者:
    Clive Oppenheimer
Phasing and climate forcing potential of the Millennium Eruption of Mt. Baekdu
白头山千年大爆发的阶段性和气候强迫潜力
  • DOI:
    10.1038/s43247-024-01713-z
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    8.900
  • 作者:
    Giyoon Lee;Andrea Burke;William Hutchison;Patrick Sugden;Celeste Smith;Joseph R. McConnell;Michael Sigl;Clive Oppenheimer;Sune Olander Rasmussen;Jørgen Peder Steffensen;Seung Ryeol Lee;Jinho Ahn
  • 通讯作者:
    Jinho Ahn
Towards a dendrochronologically refined date of the Laacher See eruption around 13,000 years ago
根据树木年代学精确确定大约 13,000 年前拉赫湖喷发的日期
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4
  • 作者:
    F. Reinig;Paolo Cherubini;Stefan Engels;J. Esper;Giulia Guidobaldi;Olaf Jöris;Christine S. Lane;D. Nievergelt;Clive Oppenheimer;Cornelia Park;H. Pfanz;F. Riede;H. Schmincke;Martin Street;Lukas Wacker;U. Büntgen
  • 通讯作者:
    U. Büntgen

Clive Oppenheimer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clive Oppenheimer', 18)}}的其他基金

UNDERSTANDING LAVA LAKES USING A NOVEL RADAR ALTIMETER
使用新型雷达高度计了解熔岩湖
  • 批准号:
    NE/N009312/1
  • 财政年份:
    2016
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Research Grant
Mechanisms and implications of the 2011 eruption of Nabro volcano, Eritrea
厄立特里亚纳布罗火山 2011 年喷发的机制和影响
  • 批准号:
    NE/J012297/1
  • 财政年份:
    2011
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Research Grant
MPhil in GIS and Remote Sensing. Masters Training Grant (MTG) to provide funding for 3 full studentships for two years
地理信息系统和遥感哲学硕士。
  • 批准号:
    NE/H525503/1
  • 财政年份:
    2009
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Training Grant
Master of Philosophy in GIS and Remote Sensing
地理信息系统和遥感哲学硕士
  • 批准号:
    NE/E522824/1
  • 财政年份:
    2006
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Training Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政​​策的情绪动态
  • 批准号:
    10108433
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    EU-Funded
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Collaborative R&D
Braiding Dynamics of Majorana Modes
马约拉纳模式的编织动力学
  • 批准号:
    DP240100168
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
  • 批准号:
    DP240100465
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Projects
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Early Career Researcher Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
  • 批准号:
    EP/Y03614X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Research Grant
Human enteric nervous system progenitor dynamics during development and disease
人类肠神经系统祖细胞在发育和疾病过程中的动态
  • 批准号:
    MR/Y013476/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Research Grant
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
  • 批准号:
    BB/Y004531/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Research Grant
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
  • 批准号:
    EP/X031934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Research Grant
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
  • 批准号:
    EP/X040852/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了