Metallurgy at Extreme Conditions: Molten Iron-Alloy Constraints on the Light Elements in Earth's Core

极端条件下的冶金:熔融铁合金对地核轻元素的限制

基本信息

  • 批准号:
    NE/F019084/1
  • 负责人:
  • 金额:
    $ 33.35万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

One of the outstanding mysteries in the Earth sciences is the composition of the core. We know from seismic and cosmochemical constraints that the core is made of a nearly pure iron (~95% Fe + 5% Ni), and that the inner core is solid and the outer core is molten. However, based on our knowledge of the behavior of molten iron at the extreme pressure and temperature conditions of the core, it is apparent that there must be some other light element or elements dissolved in the molten outer core as well. It is thought that the light element is related to convection in the outer core and is therefore important for spawning the Earth's magnetic field. The nature and abundance of the light element will also determine the kinds of reactions that might occur at the boundary between mantle silicate and the molten metal core. For the last half-century the primary candidates for the light elements in the core have included H, O, S, C, and Si. We will never be able to sample the core directly, hollywood movies notwithstanding, so other approaches are required to deduce the identity of the light elements. Basically, the approach has been to try and determine which elements can dissolve into molten iron at core conditions using experiment and theory. A perusal of the vast literature on this subject reveals that individual elements and cocktails of elements have come into, out of, and back into favor with time. Different experimental and theoretical approaches often lead to very different interpretations as to the identity of the light elements. Here we propose a method for deducing the light element in the core that relies on a combination of experiment, thermodynamic modeling, and seismic observations. Seismic data constrain the velocity at which compressional waves can move through molten iron as well as the density. They can also detect whether the core liquid has separated into more than one liquid (immiscibility). In principle, if one knows the same properties for various iron alloy - light element mixtures, one can deduce the composition of the core. The seismic observations are available. An internally consistent model for the properties of molten alloys at core conditions is not. However, thermodynamic relationships allow the physical properties to be determined through the equation of state of molten alloys. The parameters required to develop the thermodynamic model can be deduced through the melting curves of iron - light element alloy compositions. Here, we are proposing to make measurements of the melting curves of two-component (binary) alloys such as FeO, Fe3C, FeS, FeH and FeSi in order to derive the quantities required for the thermodynamic model. We have developed robust techniques in our lab for measuring melting points to very high pressures and temperatures using the laser-heated diamond anvil cell. Further, we have developed an exciting and novel new X-ray imaging technique with which we can measure directly the minimum melting compositions (eutectics) in iron - light element systems. These data further help constrain the thermodynamic models. In summary, we will use an experimental approach to measure how iron - light element alloys melt and from this data we will develop a multi-component thermodynamic model that will allow us to predict the seismic wave velocities and density of a wide range of possible core liquids. We will then compare the model with actual observations to deduce the identity of the elusive light elements in the molten outer core.
地核的组成是地球科学中最突出的谜团之一。我们从地震和宇宙化学的约束中知道,地核是由几乎纯铁(~95% Fe + 5% Ni)组成的,内核是固体的,外核是熔融的。然而,根据我们对铁水在核心极端压力和温度条件下的行为的了解,很明显,在熔融的外核中也必须有一些其他的轻元素或元素溶解。人们认为,轻元素与外核的对流有关,因此对产生地球磁场很重要。轻元素的性质和丰度也将决定在地幔硅酸盐和熔融金属核之间的边界可能发生的反应种类。在过去的半个世纪里,核心中主要的轻元素候选者包括氢、氧、硫、碳和硅。尽管有好莱坞电影,但我们永远无法直接对核心进行采样,因此需要其他方法来推断轻元素的身份。基本上,方法是通过实验和理论来尝试确定哪些元素可以在核心条件下溶解到铁水中。仔细阅读有关这一主题的大量文献就会发现,单个元素和元素的混合物已经随着时间的推移而进入、退出并重新受到青睐。不同的实验和理论方法往往导致非常不同的解释,对轻元素的身份。本文提出了一种基于实验、热力学建模和地震观测相结合的方法来推断岩心中的轻元素。地震数据限制了纵波穿过铁水的速度和密度。他们还可以检测核心液体是否已经分离成多个液体(不混溶)。原则上,如果知道各种铁合金-轻元素混合物的相同性质,就可以推断出核心的组成。地震观测资料是可用的。对于熔融合金在核心条件下的性质,内部一致的模型是不存在的。然而,热力学关系允许通过熔融合金的状态方程来确定物理性质。通过铁轻元素合金成分的熔炼曲线,可以推导出建立热力学模型所需的参数。在这里,我们建议测量双组分(二元)合金(如FeO, Fe3C, FeS, FeH和FeSi)的熔化曲线,以得出热力学模型所需的量。我们在实验室开发了强大的技术,用于使用激光加热的金刚石砧细胞测量高压和高温下的熔点。此外,我们还开发了一种新的x射线成像技术,可以直接测量铁-轻元素体系中的最小熔融成分(共晶)。这些数据进一步有助于约束热力学模型。总之,我们将使用一种实验方法来测量铁-轻元素合金是如何熔化的,并从这些数据中我们将开发一个多组分热力学模型,这将使我们能够预测地震波速度和各种可能的岩心液体的密度。然后,我们将把模型与实际观测结果进行比较,以推断出熔融外核中难以捉摸的轻元素的身份。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Calibration of Raman spectroscopy in the stress measurement of air-plasma-sprayed yttria-stabilized zirconia.
空气等离子体喷涂氧化钇稳定氧化锆应力测量中拉曼光谱的校准。
  • DOI:
    10.1366/12-06676
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Liu D
  • 通讯作者:
    Liu D
The role of beam dispersion in Raman and photo-stimulated luminescence piezo-spectroscopy of yttria-stabilized zirconia in multi-layered coatings
光束色散在多层涂层中氧化钇稳定氧化锆的拉曼和光激发光压电光谱中的作用
  • DOI:
    10.1016/j.actamat.2012.08.052
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Liu D
  • 通讯作者:
    Liu D
The NiSi melting curve to 70GPa
NiSi熔化曲线至70GPa
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Walter其他文献

Weakening Assumptions for Publicly-Verifiable Deletion
削弱可公开验证删除的假设
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Bartusek;Dakshita Khurana;Giulio Malavolta;Alexander Poremba;Michael Walter
  • 通讯作者:
    Michael Walter
Sampling the Integers with Low Relative Error
  • DOI:
    10.1007/978-3-030-23696-0_9
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Walter
  • 通讯作者:
    Michael Walter
Lattice Point Enumeration on Block Reduced Bases
  • DOI:
    10.1007/978-3-319-17470-9_16
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Walter
  • 通讯作者:
    Michael Walter
Early Cosmic Ray Research with Balloons
  • DOI:
    10.1016/j.nuclphysbps.2013.05.002
  • 发表时间:
    2013-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Walter
  • 通讯作者:
    Michael Walter
Palliative iodized talc pleurodesis with instillation via tube thoracostomy
  • DOI:
    10.1007/bf01681963
  • 发表时间:
    1997-01-01
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Andreas Türler;Michael Gawenda;Michael Walter
  • 通讯作者:
    Michael Walter

Michael Walter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Walter', 18)}}的其他基金

Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400165
  • 财政年份:
    2024
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Continuing Grant
REU Site: Nanoscale Science Undergraduate Research Experience (NanoSURE) at UNC Charlotte
REU 网站:北卡罗来纳大学夏洛特分校纳米科学本科生研究体验 (NanoSURE)
  • 批准号:
    2150172
  • 财政年份:
    2022
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Standard Grant
ICorps: Polymer Semiconductor Educational Kits
ICorps:聚合物半导体教育套件
  • 批准号:
    1903691
  • 财政年份:
    2019
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Standard Grant
Renewal: Mineral Physics Studies under the Pressure-Temperature Conditions of Earth's Deep Lower Mantle
更新:地球下地幔深处压力-温度条件下的矿物物理研究
  • 批准号:
    1722515
  • 财政年份:
    2018
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Standard Grant
Deep Mantle Recycling Revealed in Diamonds and their Mineral Inclusions
钻石及其矿物包裹体揭示了深部地幔回收
  • 批准号:
    NE/J008583/1
  • 财政年份:
    2012
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Research Grant
Carbon Geodynamics
碳地球动力学
  • 批准号:
    NE/J024821/1
  • 财政年份:
    2011
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Research Grant
Melting in the Deep Earth
融化在地球深处
  • 批准号:
    NE/I010947/1
  • 财政年份:
    2011
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Research Grant
New models for the Earth's core: the neglected role of nickel - ab initio calculations and high P-T experiments on Fe-Ni alloys
地核的新模型:镍的被忽视的作用 - 从头计算和铁镍合金的高 P-T 实验
  • 批准号:
    NE/H003541/1
  • 财政年份:
    2010
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Research Grant
Water in the Deep Earth
地球深处的水
  • 批准号:
    NE/H006362/1
  • 财政年份:
    2010
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Research Grant
Fluids in the Deep Earth: Raman Spectroscopy at High Pressures and Temperatures
地球深处的流体:高压和高温下的拉曼光谱
  • 批准号:
    NE/H011242/1
  • 财政年份:
    2010
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Research Grant

相似海外基金

New biocatalysts for selective chemical oxidations under extreme conditions
用于极端条件下选择性化学氧化的新型生物催化剂
  • 批准号:
    DP240101500
  • 财政年份:
    2024
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Discovery Projects
CAREER: Open-source GPU-accelerated computational infrastructure for coastal fluid-structure interaction in extreme hydrodynamic conditions
职业:极端​​水动力条件下沿海流固耦合的开源 GPU 加速计算基础设施
  • 批准号:
    2338313
  • 财政年份:
    2024
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Standard Grant
Engineer crop behaviors to respond to extreme climatic conditions
改造作物行为以应对极端气候条件
  • 批准号:
    2884146
  • 财政年份:
    2023
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Studentship
Mechanisms of Adaptation of Extracellular Nucleases to Extreme Conditions
胞外核酸酶适应极端条件的机制
  • 批准号:
    2311258
  • 财政年份:
    2023
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Standard Grant
Understanding interactions between minerals and small biopolymers under extreme conditions
了解极端条件下矿物质和小型生物聚合物之间的相互作用
  • 批准号:
    2870997
  • 财政年份:
    2023
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Studentship
Development of the cement-based materials resistant against extreme deep sea conditions
耐极端深海条件的水泥基材料的开发
  • 批准号:
    23K17779
  • 财政年份:
    2023
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Nuclear Structure and Dynamics under extreme conditions
极端条件下的核结构和动力学
  • 批准号:
    ST/Y000013/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Research Grant
Studying Transient X-ray Events as a Probe for Physics in Extreme Conditions
研究瞬态 X 射线事件作为极端条件下物理学的探针
  • 批准号:
    2892517
  • 财政年份:
    2023
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Studentship
New carbon phases synthesized under extreme conditions
极端条件下合成的新碳相
  • 批准号:
    DP230100231
  • 财政年份:
    2023
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Discovery Projects
MRI: Acquisition of an advanced X-ray detector for static and dynamic synchrotron X-ray scattering studies of materials at extreme conditions at the Advanced Photon Source
MRI:购买先进的 X 射线探测器,用于在先进光子源的极端条件下对材料进行静态和动态同步加速器 X 射线散射研究
  • 批准号:
    2320309
  • 财政年份:
    2023
  • 资助金额:
    $ 33.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了