Water in the Deep Earth

地球深处的水

基本信息

  • 批准号:
    NE/H006362/1
  • 负责人:
  • 金额:
    $ 26.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Everyone is familiar with the importance of water in Earth's hydrosphere. The hydrosphere likely owes its existence to water in rocks, because water is delivered to the Earth's surface by degassing of magmas derived from Earth's interior. We don't know how much water the Earth currently contains, or contained in the past. Based on our present knowledge of the maximum capacity of water in the minerals that make up Earth's mantle, there could be several oceans of water in the mantle, and possibly enough hydrogen dissolved in the core for several more. There may have been much more water during the earliest history of the Earth when deep silicate magma oceans first crystallized. We currently do not know if one or more early, possibly water-rich, atmospheres were lost due to impact erosion during accretion. One or many oceans of water may have been involved in the internal differentiation of Earth by transfer of dissolved materials in hydrous fluid. We all know of the amazing properties of water at the surface. It turns out to have different but equally amazing properties when dissolved in minerals, melts and fluids in the mantle. Even a little bit can change dramatically the strength of a mineral or the melting point of a rock. At high temperatures water as a fluid in the mantle acts like a corrosive solvent and can dissolve rock. Water as a fluid also moves around easily in the rocks of the mantle because of its low density and viscosity, so that it can transport the materials that it dissolves. Water is known to be an important agent of mass transfer in the upper mantle, changing the chemistry and physical properties of the rocks it moves through. Experimentalists have been able to determine much about how water behaves in the rocks and mineral that comprise the Earth's upper mantle. For example, at high temperatures and pressures water and melts are no longer distinct, but instead hot water in the mantle dissolves so much silicate that it much like a melt. This 'supercritical' hydrous fluid may move upward in the mantle and change the chemistry of the rocks above. The base of the silicate mantle is at ~ 2900 km, and currently we know very little about the behaviour of hydrous fluids in the depth range of the lower mantle (~ 660 - 2900 km), which constitutes the largest silicate reservoir in Earth. What we want to do in the research proposed here is to work out how hydrous fluids affect the stability of the lower mantle minerals magnesium and calcium perovskites. We also want to know the chemistry of hydrous fluids that dissolve lower mantle minerals at high P and T. We will make high P-T experiments using a multi-anvil pressure apparatus (~ 24 GPa), as well as a laser-heated diamond anvil cell (24-100 GPa). We will heat water-bearing compositions in systems containing MgO, CaO, SiO2 and H2O. In multi-anvil experiments we can measure the major and trace element composition of the hydrous fluid directly using modern micro-probe analytical techniques. In the diamond anvil cell experiments we will use in situ synchrotron X-ray diffraction techniques to carefully track phase relationships to isolate the major element composition of the fluids. With the data we collect we hope to answer important questions like: Can the movement of hydrous fluid from the lower to upper mantle significantly alter its composition? How do trace elements partition between perovskite phases and the hydrous fluid, and can they be used as tracers of fluid transfer in the mantle? Could the lower mantle have been depleted in MgO (and perhaps CaO) to the extent that it is now nearly 100% perovskite? Could subducted slabs that penetrate into the lower mantle provide enough fluid to have altered mantle chemistry through Earth history? The research we propose will provide the first systematic experimental data set that will allow us to address these important questions about the role of water in the evolution and differentiation of our planet.
每个人都熟悉水在地球水圈中的重要性。水圈的存在很可能归功于岩石中的水,因为水是通过地球内部岩浆的脱气作用输送到地球表面的。我们不知道地球现在有多少水,也不知道过去有多少水。根据我们目前对构成地幔的矿物中水的最大容量的了解,地幔中可能有几个海洋的水,可能有足够的氢在地核中溶解几个海洋。在地球最早的历史时期,当深层硅酸盐岩浆海洋第一次结晶时,可能有更多的水。我们目前还不知道是否有一个或多个早期的、可能富含水的大气层是由于吸积过程中的撞击侵蚀而丧失的。一个或多个海洋中的水可能通过转移含水流体中的溶解物质而参与了地球的内部分化。我们都知道地表水的惊人特性。事实证明,当它溶解在矿物、熔体和地幔中的流体中时,具有不同但同样令人惊叹的特性。即使是很小的一点,也会戏剧性地改变矿物的强度或岩石的熔点。在高温下,水作为地幔中的一种流体,起到了腐蚀性溶剂的作用,可以溶解岩石。水作为一种流体也很容易在地幔的岩石中移动,因为它的密度和粘度很低,所以它可以运输它溶解的物质。众所周知,水是上地幔质量转移的重要因素,改变了它所经过的岩石的化学和物理性质。实验者已经能够确定水在构成地球上地幔的岩石和矿物中的行为。例如,在高温和高压下,水和熔体不再是不同的,取而代之的是地幔中的热水溶解了如此多的硅酸盐,以至于它很像熔体。这种“超临界”含水流体可能会在地幔中向上移动,从而改变上面岩石的化学成分。硅酸盐地幔的底部约2900公里,目前我们对构成地球上最大硅酸盐储集层的下地幔(约660-2900公里)范围内的水化流体行为知之甚少。在这里提出的研究中,我们想要做的是找出含水流体如何影响下地幔矿物镁钙钙钛矿的稳定性。我们还想知道在高P和高T条件下溶解下地幔矿物的含水流体的化学。我们将使用多压头压力装置(~24 Gpa)以及激光加热的钻石压腔(24-100 Gpa)进行高P-T实验。我们将在含镁、氧化钙、二氧化硅和水的体系中加热含水成分。在多砧板实验中,我们可以利用现代微探针分析技术直接测量含水流体的主量元素和痕量元素组成。在金刚石砧座实验中,我们将使用原位同步辐射X射线衍射技术仔细跟踪相关系,以分离流体的主要元素组成。通过我们收集的数据,我们希望回答一些重要的问题,比如:含水流体从下地幔到上地幔的运动是否会显着改变其组成?微量元素是如何在钙钛矿相和水合流体之间分配的,它们是否可以作为地幔中流体转移的示踪剂?下地幔中的氧化镁(可能还有氧化钙)是否已经贫化到现在几乎100%是钙钛矿的程度?穿透下地幔的俯冲板块能提供足够的流体来改变整个地球历史中的地幔化学吗?我们提出的研究将提供第一个系统的实验数据集,使我们能够解决这些关于水在地球进化和分化中的作用的重要问题。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phase Relations In The System MgO-SiO2-H2O At Lower Mantle Conditions
下地幔条件下 MgO-SiO2-H2O 体系中的相关系
The stability of hydrous silicates in Earth's lower mantle: Experimental constraints from the systems MgO-SiO2-H2O and MgO-Al2O3-SiO2-H2O
  • DOI:
    10.1016/j.chemgeo.2015.05.001
  • 发表时间:
    2015-12-15
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Walter, M. J.;Thomson, A. R.;Kohn, S. C.
  • 通讯作者:
    Kohn, S. C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Walter其他文献

Weakening Assumptions for Publicly-Verifiable Deletion
削弱可公开验证删除的假设
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Bartusek;Dakshita Khurana;Giulio Malavolta;Alexander Poremba;Michael Walter
  • 通讯作者:
    Michael Walter
Sampling the Integers with Low Relative Error
  • DOI:
    10.1007/978-3-030-23696-0_9
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Walter
  • 通讯作者:
    Michael Walter
Lattice Point Enumeration on Block Reduced Bases
  • DOI:
    10.1007/978-3-319-17470-9_16
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Walter
  • 通讯作者:
    Michael Walter
Early Cosmic Ray Research with Balloons
  • DOI:
    10.1016/j.nuclphysbps.2013.05.002
  • 发表时间:
    2013-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Walter
  • 通讯作者:
    Michael Walter
Palliative iodized talc pleurodesis with instillation via tube thoracostomy
  • DOI:
    10.1007/bf01681963
  • 发表时间:
    1997-01-01
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Andreas Türler;Michael Gawenda;Michael Walter
  • 通讯作者:
    Michael Walter

Michael Walter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Walter', 18)}}的其他基金

Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400165
  • 财政年份:
    2024
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Continuing Grant
REU Site: Nanoscale Science Undergraduate Research Experience (NanoSURE) at UNC Charlotte
REU 网站:北卡罗来纳大学夏洛特分校纳米科学本科生研究体验 (NanoSURE)
  • 批准号:
    2150172
  • 财政年份:
    2022
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Standard Grant
ICorps: Polymer Semiconductor Educational Kits
ICorps:聚合物半导体教育套件
  • 批准号:
    1903691
  • 财政年份:
    2019
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Standard Grant
Renewal: Mineral Physics Studies under the Pressure-Temperature Conditions of Earth's Deep Lower Mantle
更新:地球下地幔深处压力-温度条件下的矿物物理研究
  • 批准号:
    1722515
  • 财政年份:
    2018
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Standard Grant
Deep Mantle Recycling Revealed in Diamonds and their Mineral Inclusions
钻石及其矿物包裹体揭示了深部地幔回收
  • 批准号:
    NE/J008583/1
  • 财政年份:
    2012
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Research Grant
Carbon Geodynamics
碳地球动力学
  • 批准号:
    NE/J024821/1
  • 财政年份:
    2011
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Research Grant
Melting in the Deep Earth
融化在地球深处
  • 批准号:
    NE/I010947/1
  • 财政年份:
    2011
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Research Grant
New models for the Earth's core: the neglected role of nickel - ab initio calculations and high P-T experiments on Fe-Ni alloys
地核的新模型:镍的被忽视的作用 - 从头计算和铁镍合金的高 P-T 实验
  • 批准号:
    NE/H003541/1
  • 财政年份:
    2010
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Research Grant
Fluids in the Deep Earth: Raman Spectroscopy at High Pressures and Temperatures
地球深处的流体:高压和高温下的拉曼光谱
  • 批准号:
    NE/H011242/1
  • 财政年份:
    2010
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Research Grant
Metallurgy at Extreme Conditions: Molten Iron-Alloy Constraints on the Light Elements in Earth's Core
极端条件下的冶金:熔融铁合金对地核轻元素的限制
  • 批准号:
    NE/F019084/1
  • 财政年份:
    2009
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Research Grant

相似国自然基金

基于Deep Unrolling的高分辨近红外二区荧光分子断层成像方法研究
  • 批准号:
    12271434
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
基于深度森林(Deep Forest)模型的表面增强拉曼光谱分析方法研究
  • 批准号:
    2020A151501709
  • 批准年份:
    2020
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
面向Deep Web的数据整合关键技术研究
  • 批准号:
    61872168
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于语义计算的海量Deep Web知识探索机制研究
  • 批准号:
    61272411
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
Deep Web数据集成查询结果抽取与整合关键技术研究
  • 批准号:
    61100167
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
面向Deep Web的大规模知识库自动构建方法研究
  • 批准号:
    61170020
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Deep Web敏感聚合信息保护方法研究
  • 批准号:
    61003054
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于逻辑强化学习的Deep Web模式匹配研究
  • 批准号:
    61070122
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

NI: DEEPHEAT: Digging deep Earth for heat to promote environmental sustainability
NI:DEEPHEAT:挖掘地球深处的热量以促进环境可持续发展
  • 批准号:
    NE/W004127/2
  • 财政年份:
    2024
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Research Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
  • 批准号:
    2333102
  • 财政年份:
    2024
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
  • 批准号:
    2333101
  • 财政年份:
    2024
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Standard Grant
EO4SDGs: Spatiotemporal poverty mapping using earth observation data and deep learning in Africa
EO4SDGs:利用地球观测数据和深度学习绘制非洲时空贫困图
  • 批准号:
    2890076
  • 财政年份:
    2023
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Studentship
Deep earth geodynamics beneath the Himalayas
喜马拉雅山下的深层地球动力学
  • 批准号:
    23KF0120
  • 财政年份:
    2023
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Conference: Interdisciplinary Antarctic Earth Science Conference & Deep-Field Planning Workshop
合作研究:会议:跨学科南极地球科学会议
  • 批准号:
    2231559
  • 财政年份:
    2022
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Standard Grant
Improving characterization and modelling of the rock-proppant interaction in hydraulic fractures for deep-earth geo-resource extraction
改进水力压裂中岩石-支撑剂相互作用的表征和建模,以进行深地地质资源开采
  • 批准号:
    RGPIN-2021-04215
  • 财政年份:
    2022
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Conference: Interdisciplinary Antarctic Earth Science Conference & Deep-Field Planning Workshop
合作研究:会议:跨学科南极地球科学会议
  • 批准号:
    2231558
  • 财政年份:
    2022
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Standard Grant
Studying the Deep Mantle from the Surface of the Earth: Investigating Clues in the Northwest Hawaiian Ridge
从地球表面研究深部地幔:调查西北夏威夷山脊的线索
  • 批准号:
    572793-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
From Crops to Glaciers: A Deep Learning Framework for Earth Observation
从农作物到冰川:地球观测的深度学习框架
  • 批准号:
    2741422
  • 财政年份:
    2022
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了