Three-Dimensional Rotational Dynamics and Coupling of the Core-Mantle System

核幔系统三维旋转动力学与耦合

基本信息

  • 批准号:
    NE/G002223/1
  • 负责人:
  • 金额:
    $ 30.82万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Investigation of the properties and dynamics of the deep interior of the Earth necessarily relies on indirect observations. Seismological studies provide information on the physical properties of the deep Earth and its boundaries and in some cases repeat observations can reveal the dynamics of the deep Earth; for example, the observed 'super-rotation' of the solid inner core. Study of geomagnetic secular variation provides insight on the nature of fluid flow at the surface of the fluid core, and indirect information on the physical properties of the deep Earth. The planet's rotational dynamics provide an additional source of information on the Earth's deep interior and developing a more complete understanding of planetary rotational dynamics is the goal of this project. Variation in the Earth's rotation involves changes in both the rate of rotation (observed as a change in the length of day and correlated with so-called torsional oscillation flow in the fluid core) and the orientation of the rotation axis with respect to the celestial reference frame (periodic fluctuations arising from gravitational interaction with the sun, moon and planets are referred to as nutations). Both length-of-day variations and nutations involve angular momentum exchange between the mantle, outer core and inner core. The strength of the coupling between these regions depends on physical properties of the Earth such as the strength and geometry of the magnetic field within the core, the electrical conductivity of the core and lower mantle, and the viscosities of the outer and inner cores. Although both length-of-day variations and nutations involve similar dynamic effects and provide complementary evidence on the nature of the deep Earth, previous work has tended to analyse these phenomena separately. The first goal of this project is to refine and harmonise the theoretical descriptions of core-mantle coupling in models of nutation and of length-of-day variation. In so doing, we will take advantage of theoretical advances that have occurred to improve one of the types of model, but that have not yet been applied to the other. For example, the theory of viscous coupling in nutation models is more fully developed than that in models of length-of-day. On the other hand, recent work has led to improved descriptions of the geometry of the magnetic field in length-of-day models, and an appreciation for the importance of a commonly neglected effect that adds to ohmic dissipation at the core-mantle boundary. Using the updated models we will reanalyse the existing rotation data sets to obtain improved estimates of the physical properties of the deep Earth. In the final stage of this project we will develop a single model that can self-consistently describe both nutations and torsional oscillations. This would allow for joint inversion of the independent data sets, providing further improvements in the constraints on the physical properties of the deep Earth. The joint model will be used to investigate the dynamics of cross-coupling within the system, including the possibility that torsional oscillations excite an observed decadal-period variation in the orientation of the rotation axis known as the Markowitz Wobble, and a proposed correlation between the timing of phase jumps in the Chandler Wobble (which has a period of 433 days) and so-called geomagnetic jerks (which have also been linked to torsional oscillations). The new information that we gain concerning the physical properties and short time scale dynamics of the Earth's core-mantle system will be useful for testing numerical models of the geodynamo process that is responsible for generation of the Earth's magnetic field.
对地球内部深处的性质和动力学的研究必然依赖于间接观测。地震学研究提供了关于地球深部及其边界的物理特性的信息,在某些情况下,重复观测可以揭示地球深部的动态;例如,观测到的固体内核的“超旋转”。对地磁长期变化的研究提供了对流体核表面流体流动性质的深入了解,以及关于地球深部物理性质的间接信息。该行星的旋转动力学提供了关于地球内部深处的额外信息来源,该项目的目标是更全面地了解行星旋转动力学。地球自转的变化包括自转速率的变化(观察到的是白天长度的变化,并与流体核心中所谓的扭转振荡流相关)和自转轴相对于天体参考系的方向(由太阳,月亮和行星的引力相互作用引起的周期性波动被称为章动)。日长变化和章动都涉及地幔、外核和内核之间的角动量交换。这些区域之间的耦合强度取决于地球的物理性质,例如地核内磁场的强度和几何形状,地核和下地幔的电导率,以及外核和内核的粘度。虽然日长变化和章动都涉及类似的动力学效应,并为地球深部的性质提供了补充证据,但以前的工作倾向于分别分析这些现象。这个项目的第一个目标是在章动和日长变化模型中改进和协调核幔耦合的理论描述。在这样做时,我们将利用已经发生的理论进步来改进其中一种模型,但尚未应用于另一种模型。例如,章动模型中的粘性耦合理论比日长模型中的粘性耦合理论发展得更充分。另一方面,最近的工作已经导致改进的描述的几何形状的磁场在一天的长度模型,并赞赏的重要性,通常被忽视的影响,增加了欧姆耗散在核幔边界。使用更新的模型,我们将重新分析现有的旋转数据集,以获得对地球深处物理特性的更好估计。在这个项目的最后阶段,我们将开发一个单一的模型,可以自洽地描述章动和扭转振荡。这将允许对独立的数据集进行联合反演,进一步改善对地球深部物理特性的限制。联合模型将用于研究系统内交叉耦合的动力学,包括扭转振荡激发被称为Markowitz摆动的旋转轴方向的观测到的十年周期变化的可能性,以及提出的钱德勒摆动中相位跳跃的定时之间的相关性(周期为433天)和所谓的地磁急动(也与扭转振荡有关)。我们获得的有关地球核幔系统的物理性质和短时间尺度动力学的新信息将有助于测试地球发电机过程的数值模型,该过程负责产生地球磁场。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Constraints on the visco-magnetic core-mantle coupling from Earth's rotation
地球自转对粘磁核幔耦合的约束
On the influence of a translating inner core in models of outer core convection
平移内核对外核对流模型的影响
Inner core translation and the hemispheric balance of the geomagnetic field
内核平移与地磁场的半球平衡
Assessing the importance and expression of the 6 year geomagnetic oscillation
  • DOI:
    10.1029/2012jb009405
  • 发表时间:
    2012-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Silva;L. Jackson;J. Mound
  • 通讯作者:
    L. Silva;L. Jackson;J. Mound
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Mound其他文献

Jonathan Mound的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Mound', 18)}}的其他基金

Beyond 1D Structure of Earth's Core - Reconciling Inferences from Seismic and Geomagnetic Observations
超越地核的一维结构 - 协调地震和地磁观测的推论
  • 批准号:
    NE/W005247/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Research Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
  • 批准号:
    2473795
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Studentship
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Continuing Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Standard Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
  • 批准号:
    2331590
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
  • 批准号:
    2422478
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Continuing Grant
Porous Two-Dimensional Inorganic Semiconductors for Optoelectronic Devices
用于光电器件的多孔二维无机半导体
  • 批准号:
    DP240100961
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Discovery Projects
Controllable quantum phases in two-dimensional metal-organic nanomaterials
二维金属有机纳米材料中的可控量子相
  • 批准号:
    DP240102006
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Discovery Projects
Defining new asthma phenotypes using high-dimensional data
使用高维数据定义新的哮喘表型
  • 批准号:
    2901112
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Studentship
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
  • 批准号:
    EP/Y022092/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.82万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了