Using satellite data to monitor REDD+ projects: developing methodologies and error estimation for Africa

利用卫星数据监测REDD项目:为非洲制定方法和误差估计

基本信息

  • 批准号:
    NE/I021217/1
  • 负责人:
  • 金额:
    $ 32.34万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Deforestation is occurring at a rapid rate in tropical countries, accounting for 12-15 % of human emissions of greenhouse gases. This causes more problems than exacerbating climate change and the loss of species. Destruction of forests is known to reduce rainfall, increase the rate of soil erosion and increase the risk of flooding in tropical countries. A major United Nations policy process is underway to halt tropical deforestation: it is called Reducing Emissions from Deforestation and Degradation (REDD). REDD involves developed countries making direct payments to developing countries, enabling them to increase their population's standard of living without destroying their forests. This also benefits the developed world, as it will reduce the rate of climate change and preserve these biodiverse and climate-stabilising forests. One major sticking point in the negotiations for REDD is methods for measuring and monitoring forest area, and in particular 'biomass'. This is the amount of living material in an area, and corresponds directly to the quantity of carbon stored in the vegetation. It is important to be able to assess the biomass of an area at a number of different time points: in the past so that the historical rate of deforestation can be calculated; at the present day; and into the future to measure deforestation and therefore calculate (and verify) appropriate payments. The most accurate way to measure the biomass of forests is to measure the location, diameter and height of every tree. This is expensive and time-consuming, and thus most projects are constrained to a maximum of about a hundred plots over a project site. Therefore satellite data is used to produce biomass maps for the past and present, using field data to test and improve the accuracy of estimated biomass. There is little independent work being done to assess the accuracy of the many different satellite monitoring systems available. There are three major types to consider. First the various optical satellite sensors, which are essentially similar to digital cameras, taking images of the Earth from space; secondly radar satellite sensors, which send pings of microwave radiation at the surface, and 'listen' for their return; and thirdly LiDAR data, which is similar to radar but uses pulses of laser light. All of the systems have different advantages and disadvantages: optical data cannot see through cloud, and can only determine forest area rather than biomass and so may miss degradation; radar data is a new technology and the consistency of biomass maps in different areas and at different times is unknown; LiDAR produces the most accurate biomass maps, but there is currently no satellite system that collects it, so it has to be collected from an aircraft, greatly increasing costs. We aim to objectively estimate the errors involved in these different methods using REDD forest projects in three African countries with differing vegetation types: Mozambique, Uganda and Gabon, as well as looking at new ways to use and combine their data to increase accuracies. We have already established collaborations with the management of these REDD projects, which are in various stages of development, and they have agreed to give us access to all their data, and to allow us to influence ground collection regimes and analyse satellite data over their sites. The project will quantify the accuracy of different satellite methods for assessing changes in biomass in REDD projects. The data and analyses emerging from this study will be widely used, by project implementers trying to find optimal methodologies, and by investors and independent monitoring agencies wishing to estimate the accuracy of the monitoring regime in a project or country. The project has the potential for a huge impact, potentially contributing to a reduction in the rate of global deforestation by reducing the cost and increasing the accuracy of all forest monitoring systems.
森林砍伐在热带国家正在迅速发生,占人类温室气体排放量的12- 15%。这造成的问题比加剧气候变化和物种灭绝还要多。众所周知,在热带国家,毁坏森林会减少降雨量,增加土壤侵蚀率,增加洪水风险。联合国正在进行一项重要的政策进程,以制止热带森林砍伐:它被称为减少森林砍伐和退化造成的排放(REDD)。REDD涉及发达国家向发展中国家直接付款,使它们能够在不破坏森林的情况下提高其人民的生活水平。这也有利于发达国家,因为它将降低气候变化的速度,保护这些生物多样性和气候稳定的森林。关于降排的谈判中的一个主要症结是测量和监测森林面积,特别是“生物量”的方法。这是一个地区的生物量,直接对应于植被中储存的碳量。必须能够在若干不同的时间点评估一个地区的生物量:在过去,以便计算历史毁林率;在今天;在未来,以便测量毁林情况,从而计算(和核实)适当的付款。测量森林生物量的最准确方法是测量每棵树的位置、直径和高度。这是昂贵和耗时的,因此大多数项目被限制在一个项目场地上最多约100块地块。因此,利用卫星数据绘制过去和现在的生物量图,利用实地数据测试和提高生物量估计数的准确性。目前几乎没有开展独立的工作来评估现有的许多不同卫星监测系统的准确性。有三种主要类型需要考虑。首先是各种光学卫星传感器,本质上类似于数码相机,从太空拍摄地球图像;其次是雷达卫星传感器,在地面发送微波辐射的ping,并“收听”它们的返回;第三是LiDAR数据,类似于雷达,但使用激光脉冲。这些系统各有优缺点:光学数据不能穿透云层,只能确定森林面积而不能确定生物量,因此可能会遗漏退化情况;雷达数据是一种新技术,不同地区和不同时间的生物量图的一致性是未知的;激光雷达可以生成最精确的生物量地图,但目前还没有卫星系统可以收集它,因此必须从飞机上收集,这大大增加了成本。我们的目标是客观地估计这些不同的方法所涉及的误差,使用REDD森林项目在三个非洲国家不同的植被类型:莫桑比克,乌干达和加蓬,以及寻找新的方法来使用和联合收割机的数据,以提高准确性。我们已经与这些处于不同发展阶段的REDD项目的管理层建立了合作关系,他们同意让我们获得他们的所有数据,并允许我们影响地面收集制度和分析他们网站的卫星数据。该项目将量化评估降排项目中生物量变化的不同卫星方法的准确性。这项研究产生的数据和分析将被试图找到最佳方法的项目执行者以及希望估计项目或国家监测制度准确性的投资者和独立监测机构广泛使用。该项目有可能产生巨大影响,通过降低成本和提高所有森林监测系统的准确性,可能有助于降低全球森林砍伐率。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Assessing Forest/Non-Forest Separability Using Sentinel-1 C-Band Synthetic Aperture Radar
  • DOI:
    10.3390/rs12111899
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Johannes N. Hansen;E. Mitchard;Stuart King
  • 通讯作者:
    Johannes N. Hansen;E. Mitchard;Stuart King
Spatial Wavelet Statistics of SAR Backscatter for Characterizing Degraded Forest: A Case Study From Cameroon
用于表征退化森林的 SAR 后向散射空间小波统计:喀麦隆案例研究
State of the Climate in 2012
The distribution and amount of carbon in the largest peatland complex in Amazonia
  • DOI:
    10.1088/1748-9326/9/12/124017
  • 发表时间:
    2014-12-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Draper, Frederick C.;Roucoux, Katherine H.;Baker, Timothy R.
  • 通讯作者:
    Baker, Timothy R.
Perturbations in the carbon budget of the tropics.
  • DOI:
    10.1111/gcb.12600
  • 发表时间:
    2014-10
  • 期刊:
  • 影响因子:
    11.6
  • 作者:
    Grace J;Mitchard E;Gloor E
  • 通讯作者:
    Gloor E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Mitchard其他文献

Edward Mitchard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Mitchard', 18)}}的其他基金

Commercialising radar-based detection of deforestation and forest degradation
将基于雷达的毁林和森林退化检测商业化
  • 批准号:
    NE/M021998/1
  • 财政年份:
    2015
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Research Grant
Converting developments in the use of satellite radar data to detect deforestation and forest degradation into market products
将利用卫星雷达数据检测毁林和森林退化的进展转化为市场产品
  • 批准号:
    NE/M017168/1
  • 财政年份:
    2014
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Research Grant

相似国自然基金

异染色质 Satelliteα RNA激活p53在视网膜色素上皮细胞衰老中的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
α-satellite RNA通过DHX36和SAF-A调控有丝分裂的机制研究
  • 批准号:
    32000437
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
可序贯式递送药物的新型Core-Satellite纳米系统抗肿瘤血管生成和血管生成拟态的研究
  • 批准号:
    81773274
  • 批准年份:
    2017
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Measuring and Modeling Local Economic Development using New Satellite Data and Spatial Econometrics
使用新卫星数据和空间计量经济学测量和建模地方经济发展
  • 批准号:
    24K04884
  • 财政年份:
    2024
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of countermeasures against heat illness from both hardware and software perspectives using satellite remote sensing and human flow data
利用卫星遥感和人流数据从硬件和软件角度评估中暑对策
  • 批准号:
    23K13457
  • 财政年份:
    2023
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Measuring resilience and early warning signals of critical slowdown in forest and grassland habitats using time-series satellite data
使用时间序列卫星数据测量森林和草原栖息地严重放缓的恢复力和预警信号
  • 批准号:
    2880900
  • 财政年份:
    2023
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Studentship
Greenland Ice Sheet - Ocean Interactions: Using satellite data and AI to understand ice dynamic change
格陵兰冰盖 - 海洋相互作用:利用卫星数据和人工智能了解冰的动态变化
  • 批准号:
    2886128
  • 财政年份:
    2023
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Studentship
Ionospheric data assimilation using satellite observations
利用卫星观测进行电离层数据同化
  • 批准号:
    2891699
  • 财政年份:
    2023
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Studentship
Practical development of global standard technology in archaeological survey using multi-satellite data
多卫星数据考古调查全球标准技术的实用化发展
  • 批准号:
    23H00718
  • 财政年份:
    2023
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Estimating freight OD matrix using nighttime satellite imagery and spatiotemporal vehicle data
利用夜间卫星图像和时空车辆数据估算货运 OD 矩阵
  • 批准号:
    23K17802
  • 财政年份:
    2023
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Evaluating the Impact of Transportation Infrastrcuture on the Enviornment Using Satellite Data
使用卫星数据评估交通基础设施对环境的影响
  • 批准号:
    23K17086
  • 财政年份:
    2023
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Constructing the data base for the establishment of economic analysis methods using satellite images
利用卫星图像构建建立经济分析方法的数据库
  • 批准号:
    23K17284
  • 财政年份:
    2023
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
I-Corps: Automated water quality monitoring system using satellite data for measurements of water resource characteristics
I-Corps:利用卫星数据测量水资源特征的自动化水质监测系统
  • 批准号:
    2205585
  • 财政年份:
    2022
  • 资助金额:
    $ 32.34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了