Nanoscale Imaging of Microbial-Mineral Interactions (NIMMI)
微生物-矿物质相互作用的纳米级成像 (NIMMI)
基本信息
- 批准号:NE/J024732/1
- 负责人:
- 金额:$ 55.47万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Microbial processes mediate the redox state of many metals and radionuclides, which in turn controls their mobility in the environment and the stability of a wide range of mineral phases. Organics are also influenced by these processes, acting either as electron donors for metal/mineral reduction, or as competing electron acceptors, for example in the case of chlorinated solvents. Advances in molecular ecology, genomics and post-genomic technologies have given us significant insight into the diversity of the organisms responsible for these important processes, and the underpinning physiology, often at a genetic level. In parallel, developments in nano-scale imaging and spectroscopy now offer the potential to reveal how these biological processes impact on the geosphere at an atomic-scale. The aim of this project is to gain a deeper understanding of key microbial-mineral interactions at the nano-scale using a combination of new state of the art synchrotron imaging techniques, including STXM, alongside microbiological, microscopy, geochemical and modelling approaches. Three complementary and interlinked systems of major environmental importance are the foci of this investigation. First, we will address the microbial reduction of insoluble Fe(III) oxyhydroxides, which plays a major role in many coupled biogeochemical processes in subsurface environments, to identify the nano-scale processes controlling this ubiquitous form of anaerobic respiration. Next, we will focus on the reductive mobilisation of As(V) sorbed onto Fe(III) oxyhydroxides, to identify the mechanism of this bioprocess thought to be catalysed by Fe(III)-reducing bacteria, and threatening the lives of tens of millions worldwide. Finally, the bioreduction of U(VI) in Fe(III)-reducing systems, which potentially limits uranium solubility, will also be studied as it has considerable relevance to the management of our existing soil contamination and our legacy nuclear waste, but is poorly understood at a mechanistic level.Through this programme, the applicants aim to obtain definitive evidence to help us understand the precise mechanisms of these important processes, which have been studied for more than a decade by many groups world-wide, but remain elusive. Impact will be across a broad scientific community, underpinning more robust conceptual and numerical models in very high profile areas including contaminant bioremediation, trace metal/metalloid biogeochemistry and the safe long-term stewardship of our legacy nuclear waste. Stakeholder engagement will be through strong links that already exist between Manchester and key centres involved in land and water quality and nuclear waste disposal, in the UK and worldwide. We will also enable the transfer of soft x-ray and STXM expertise from synchrotron facilities in North America and Europe to the UK Diamond synchrotron (beamline under construction), while training of key personal in the UK to make maximal use of these exciting and powerful new world-class facilities.
微生物过程介导了许多金属和放射性核素的氧化还原状态,这反过来又控制了它们在环境中的流动性和各种矿物相的稳定性。有机物也受到这些过程的影响,它们要么作为金属/矿物还原的电子供体,要么作为竞争的电子受体,例如在氯化溶剂的情况下。分子生态学、基因组学和后基因组学技术的进步,通常在遗传水平上,使我们对负责这些重要过程的生物体的多样性和基础生理学有了深刻的了解。与此同时,纳米级成像和光谱学的发展现在提供了揭示这些生物过程如何在原子尺度上影响地圈的潜力。该项目的目的是通过结合最先进的同步加速器成像技术,包括STXM,以及微生物学,显微镜学,地球化学和建模方法,在纳米尺度上对关键的微生物-矿物相互作用有更深入的了解。三个互补和相互联系的主要环境重要性系统是本调查的重点。首先,我们将解决不溶性铁(III)氢氧化物的微生物还原,它在地下环境中的许多耦合生物地球化学过程中起着重要作用,以确定控制这种普遍存在的厌氧呼吸形式的纳米级过程。接下来,我们将重点关注吸附在铁(III)氢氧化物上的As(V)的还原动员,以确定这一生物过程的机制,该过程被认为是由铁(III)还原细菌催化的,并威胁着全球数千万人的生命。最后,还将研究Fe(III)还原系统中U(VI)的生物还原,这可能会限制铀的溶解度,因为它与我们现有的土壤污染和遗留核废料的管理有相当大的相关性,但在机制层面上知之甚少。通过这一方案,申请人的目的是获得明确的证据,以帮助我们了解这些重要过程的确切机制,这些过程已经被世界各地的许多团体研究了十多年,但仍然难以捉摸。影响将遍及广泛的科学界,在非常引人注目的领域,包括污染物生物修复、微量金属/类金属生物地球化学和我们遗留核废料的长期安全管理,建立更强大的概念和数值模型。利益相关者的参与将通过曼彻斯特与英国和世界各地涉及土地和水质以及核废料处理的关键中心之间已经存在的紧密联系来实现。我们还将把北美和欧洲同步加速器设施的软x射线和STXM专业知识转移到英国钻石同步加速器(正在建设中的光束线),同时培训英国的关键人员,以最大限度地利用这些令人兴奋和强大的新世界级设施。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fluorescence spectroscopy and microscopy as tools for monitoring redox transformations of uranium in biological systems.
- DOI:10.1039/c5sc00661a
- 发表时间:2015-09-01
- 期刊:
- 影响因子:8.4
- 作者:Jones DL;Andrews MB;Swinburne AN;Botchway SW;Ward AD;Lloyd JR;Natrajan LS
- 通讯作者:Natrajan LS
NanoSIMS imaging of extracellular electron transport processes during microbial iron(III) reduction.
- DOI:10.1093/femsec/fiy104
- 发表时间:2018-08-01
- 期刊:
- 影响因子:4.2
- 作者:Newsome L;Lopez Adams R;Downie HF;Moore KL;Lloyd JR
- 通讯作者:Lloyd JR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Lloyd其他文献
Application of geomicrobial techniques to constrain mechanisms of arsenic mobilisation in anoxic aquifers
应用地质微生物技术限制缺氧含水层中砷的迁移机制
- DOI:
10.3897/aca.6.e107756 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Teto Seitshiro;Naji M. Bassil;Oliver Moore;Jonathan Lloyd - 通讯作者:
Jonathan Lloyd
SAT177 - Pharmacologic inhibition of HSD17B13 is hepatoprotective in mouse models of liver injury
SAT177 - 对 HSD17B13 的药理抑制在肝损伤小鼠模型中具有肝脏保护作用
- DOI:
10.1016/s0168-8278(22)01811-6 - 发表时间:
2022-07-01 - 期刊:
- 影响因子:33.000
- 作者:
Manuel Roqueta-Rivera;Mary Chau;Kelsey Garlick;Anand Balakrishnan;Archie C. Reyes;Jonathan Lloyd;Sourav Ghorai;Jiang Long;Joe Panarese;Bin Wang;Khanh Hoang;Tim Greizer;Lijuan Jiang;Guoqiang Wang;Yat Sun Or;Bryan Goodwin - 通讯作者:
Bryan Goodwin
FRI-356 - HSD17B13 inhibitors are hepatoprotective and anti-inflammatory in a mouse model of autoimmune hepatitis
- DOI:
10.1016/s0168-8278(23)01097-8 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:
- 作者:
Manuel Roqueta-Rivera;Yaohui Nie;Jordan Butts;Mary Chau;Kelsey Garlick;Archie C. Reyes;Jonathan Lloyd;Joshua Klaene;Yat-Sun Or;Bryan Goodwin - 通讯作者:
Bryan Goodwin
Jonathan Lloyd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Lloyd', 18)}}的其他基金
Engineering biology for critical metal recovery from industrial wastestreams
从工业废物流中回收关键金属的工程生物学
- 批准号:
BB/Y008448/1 - 财政年份:2024
- 资助金额:
$ 55.47万 - 项目类别:
Research Grant
Engineering Microbial Metal Recovery (EMMR)
工程微生物金属回收 (EMMR)
- 批准号:
BB/W01467X/1 - 财政年份:2022
- 资助金额:
$ 55.47万 - 项目类别:
Research Grant
Molecular engineering of high activity multifunctional biometallic catalysts for clickable chemistries
用于可点击化学的高活性多功能生物金属催化剂的分子工程
- 批准号:
BB/R010412/1 - 财政年份:2018
- 资助金额:
$ 55.47万 - 项目类别:
Research Grant
Genetic and molecular basis of organic-arsenic-microbe interactions in arsenic prone aquifers (GOAM)
易砷含水层有机砷微生物相互作用的遗传和分子基础(GOAM)
- 批准号:
NE/P01304X/1 - 财政年份:2017
- 资助金额:
$ 55.47万 - 项目类别:
Research Grant
COG3: The geology, geometallurgy and geomicrobiology of cobalt resources leading to new product streams
COG3:钴资源的地质学、地质冶金学和地质微生物学带来新的产品流
- 批准号:
NE/M011518/1 - 财政年份:2015
- 资助金额:
$ 55.47万 - 项目类别:
Research Grant
Resource recovery from wastewater with Bioelectrochemical Systems
使用生物电化学系统从废水中回收资源
- 批准号:
NE/L014203/1 - 财政年份:2014
- 资助金额:
$ 55.47万 - 项目类别:
Research Grant
Towards Realisation of Untapped Oil Resources via Enhanced THAI-CAPRI Process Using Novel Catalysts
通过使用新型催化剂的增强型 THAI-CAPRI 工艺实现未开发石油资源
- 批准号:
EP/J008338/1 - 财政年份:2012
- 资助金额:
$ 55.47万 - 项目类别:
Research Grant
Doctoral Training Grant (DTG) to provide funding for 12 PhD Studentships
博士培训补助金 (DTG) 将为 12 名博士生提供资助
- 批准号:
NE/H527159/1 - 财政年份:2009
- 资助金额:
$ 55.47万 - 项目类别:
Training Grant
相似国自然基金
非小细胞肺癌Biomarker的Imaging MS研究新方法
- 批准号:30672394
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Synthetic biology approaches to construct metal analogues of vitamin B12 to act as anti-microbial and imaging agents for health applications.
利用合成生物学方法构建维生素 B12 的金属类似物,作为健康应用的抗菌剂和显像剂。
- 批准号:
2881504 - 财政年份:2023
- 资助金额:
$ 55.47万 - 项目类别:
Studentship
FluTO: A next generation tool for imaging and analyzing microbial glycan foraging
FluTO:用于成像和分析微生物聚糖觅食的下一代工具
- 批准号:
573862-2022 - 财政年份:2022
- 资助金额:
$ 55.47万 - 项目类别:
University Undergraduate Student Research Awards
Correlative 3D Cryo-Imaging of Microorganisms for Understanding Anti- Microbial Agents
用于了解抗菌药物的微生物相关 3D 冷冻成像
- 批准号:
2620644 - 财政年份:2021
- 资助金额:
$ 55.47万 - 项目类别:
Studentship
Technology development for in situ imaging of microbial cultures
微生物培养原位成像技术开发
- 批准号:
BB/V509255/1 - 财政年份:2021
- 资助金额:
$ 55.47万 - 项目类别:
Training Grant
Technology development for in situ imaging of microbial cultures
微生物培养原位成像技术开发
- 批准号:
2589219 - 财政年份:2021
- 资助金额:
$ 55.47万 - 项目类别:
Studentship
Quantifying Microbial Keratitis to Predict Outcomes: An Imaging and Epidemiologic Approach
量化微生物角膜炎以预测结果:影像学和流行病学方法
- 批准号:
10674082 - 财政年份:2020
- 资助金额:
$ 55.47万 - 项目类别:
Quantifying Microbial Keratitis to Predict Outcomes: An Imaging and Epidemiologic Approach
量化微生物角膜炎以预测结果:影像学和流行病学方法
- 批准号:
10357921 - 财政年份:2020
- 资助金额:
$ 55.47万 - 项目类别:
Quantifying Microbial Keratitis to Predict Outcomes: An Imaging and Epidemiologic Approach
量化微生物角膜炎以预测结果:影像学和流行病学方法
- 批准号:
10604249 - 财政年份:2020
- 资助金额:
$ 55.47万 - 项目类别:
Small cell imaging using smartphones and single-board computing: analysing platelet function and microbial pathogens using consumer optoelectronics
使用智能手机和单板计算的小细胞成像:使用消费光电分析血小板功能和微生物病原体
- 批准号:
EP/S010807/1 - 财政年份:2019
- 资助金额:
$ 55.47万 - 项目类别:
Research Grant
Molecular mapping of microbial communities at the host-pathogen interface by multi-modal 3-dimensional imaging mass spectrometry
通过多模态 3 维成像质谱法绘制宿主-病原体界面微生物群落的分子图谱
- 批准号:
10231176 - 财政年份:2018
- 资助金额:
$ 55.47万 - 项目类别: