Quantifying Microbial Keratitis to Predict Outcomes: An Imaging and Epidemiologic Approach
量化微生物角膜炎以预测结果:影像学和流行病学方法
基本信息
- 批准号:10674082
- 负责人:
- 金额:$ 5.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAntimicrobial ResistanceBlindnessClinicalClinical DataClinical ManagementClinical TrialsComplexCorneaCorneal DiseasesDataData CollectionDatabasesDiabetic RetinopathyDiseaseEarly InterventionElectronic Health RecordEnrollmentEnvironmentEpidemiologyEquipmentEtiologyEyeFutureGoalsHealthImageImage AnalysisInflammatoryInterventionKeratitisLinear RegressionsLinkLiteratureMeasurableMeasuresMethodsMichiganModelingMorphologyOrganismOutcomeParticipantPatient Outcomes AssessmentsPatient-Focused OutcomesPatientsPhysiciansProviderResearchResearch PersonnelRiskRisk FactorsSelf-ExaminationSeveritiesSeverity of illnessStandardizationStrategic PlanningSurveysSymptomsSystemTechniquesTechnologyTestingTimeTreatment EfficacyUniversitiesVisionVisual AcuityWorkantimicrobialbasecare systemscomparison groupcostdeep learningepidemiology studyhealingimproved outcomeindividualized medicineinnovationinsightlongitudinal databasemicrobialnovelopen sourceoutcome predictionpatient stratificationperformance testspersonalized carepersonalized medicineprimary outcomeprospectiverisk stratificationslit lamp imagingtooltreatment planningtreatment response
项目摘要
PROJECT SUMMARY/ABSTRACT
For epidemiological studies, future clinical trials, and personalized patient care, there is a critical need
to create a risk-stratification system for microbial keratitis. Microbial keratitis (MK), a debilitating,
infectious corneal disease, is estimated to be the fourth-leading cause of blindness worldwide. MK
severity depends on a complex interaction of patient, organism, and environment, resulting in a
spectrum of clinical presentations and responses to treatment. Clinical presentations manifest with
unique morphology features and clinical symptoms. Morphology features are visible in the cornea, and
symptoms are measurable. But most patients are treated with non-specific broad-spectrum
antimicrobials, an approach that increases antimicrobial resistance. This non-specific treatment
approach lacks congruence with the unique MK presentations. There is a critical need for a new
strategy to personalize treatments for MK and measure treatment efficacy. With quantified MK
morphologic and clinical features, clinicians will have the tools to risk-stratify patients. The long-term
goal is to develop rapid, objective, personalized treatment plans for patients with MK. This proposal’s
objective is to quantify dynamic morphologic and clinical MK features using image and electronic health
record (EHR) analyses and then build a risk-stratification scoring system associated with MK outcomes.
The proposed research will test the hypothesis that morphologic and clinical features accurately risk-
stratify patients for corneal and vision outcomes. Our premise is supported by preliminary data
demonstrating that: (1) different organisms generate distinct morphologic and clinical features; (2)
clinicians quantify morphology less precisely than image-analysis methods, (3) an expert is able to use
MK features to tailor treatments; (4) the use of quantified features has improved outcomes in other
diseases, such as diabetic retinopathy, by helping providers to tailor treatments; (5) EHR data can be
used to quantify and classify clinical disease features accurately; and (6) EHR data can be used
effectively to risk-stratify patients. Aim 1 will develop objective image analysis tools to measure features
of MK with existing clinical equipment. Aim 2 will evaluate MK treatment efficacy using morphologic
image analysis and clinical features from prospective surveys. Aim 3 will risk-stratify patients with MK
by combining image analysis and EHR extracted data. The expected outcomes are: (1) characterized
databases of MK images and linked clinical data, (2) quantified MK features across a spectrum of
clinical presentations, (3) performance-tested, open-source imaging algorithms and surveys to measure
MK markers dynamically, and (4) a novel risk stratification model and scoring system. The resultant
work will have significant value to clinicians. Clinicians can use practical, low-cost technologies and
readily-available EHR data to quantify MK features and risk-stratify patients in order to tailor treatments.
项目总结/摘要
对于流行病学研究、未来的临床试验和个性化的患者护理,
建立一个微生物角膜炎的风险分层系统。微生物性角膜炎(MK),一种使人衰弱,
传染性角膜疾病估计是全世界第四大致盲原因。MK
严重程度取决于患者、生物体和环境的复杂相互作用,
临床表现和对治疗的反应谱。临床表现为
独特的形态学特征和临床症状。角膜中的形态特征可见,
症状是可测量的。但大多数患者接受的是非特异性广谱
抗生素,一种增加抗生素耐药性的方法。这种非特异性治疗
方法缺乏与独特的MK演示文稿的一致性。迫切需要一个新的
策略,以个性化治疗MK和衡量治疗效果。量化MK
形态学和临床特征,临床医生将有工具来对患者进行风险分层。长期
我们的目标是为MK患者制定快速,客观,个性化的治疗计划。这个提议
目的是使用图像和电子健康来量化MK的动态形态学和临床特征
记录(EHR)分析,然后建立与MK结果相关的风险分层评分系统。
拟议的研究将测试形态和临床特征准确风险的假设-
根据角膜和视力结果对患者进行分层。我们的假设得到了初步数据的支持
证明:(1)不同的生物体产生不同的形态学和临床特征;(2)
临床医生量化形态不如图像分析方法精确,(3)专家能够使用
MK功能,以定制治疗;(4)使用量化功能改善了其他
疾病,如糖尿病视网膜病变,通过帮助提供者定制治疗;(5)EHR数据可以
用于准确地量化和分类临床疾病特征;以及(6)可以使用EHR数据
有效地对患者进行风险分层。AIM 1将开发客观的图像分析工具来测量特征
使用现有的临床设备。目的2将使用形态学评价MK治疗的疗效
图像分析和前瞻性调查的临床特征。目标3将对MK患者进行风险分层
通过结合图像分析和EHR提取的数据。预期结果是:(1)特征化
MK图像和相关临床数据的数据库,(2)量化MK特征,
临床表现,(3)性能测试,开源成像算法和调查,以衡量
MK标志物动态变化;(4)一种新的危险分层模型和评分系统。所得
这项工作将对临床医生有重大价值。临床医生可以使用实用、低成本的技术,
易于获得的EHR数据来量化MK特征和风险分层患者,以便定制治疗。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Factors Associated With Laboratory Test Negativity Following a Transition in Specimen Collection in Microbial Keratitis Cases.
微生物性角膜炎病例标本采集转变后与实验室检测阴性相关的因素。
- DOI:10.1080/02713683.2023.2294700
- 发表时间:2024
- 期刊:
- 影响因子:2
- 作者:Miller,KeithD;Toiv,Avi;Deng,Callie;Lu,Ming-Chen;Niziol,LeslieM;Hart,JennaN;Sherman,Eric;Mian,ShahzadI;Lephart,PaulR;Sugar,Alan;Kang,Linda;Woodward,MariaA
- 通讯作者:Woodward,MariaA
Measurement Reliability for Keratitis Morphology.
- DOI:10.1097/ico.0000000000002470
- 发表时间:2020-12
- 期刊:
- 影响因子:2.8
- 作者:Kriegel MF;Loo J;Farsiu S;Prajna V;Tuohy M;Kim KH;Valicevic AN;Niziol LM;Tan H;Ashfaq HA;Ballouz D;Woodward MA
- 通讯作者:Woodward MA
Prediction of Visual Acuity in Patients With Microbial Keratitis.
微生物性角膜炎患者视力的预测。
- DOI:10.1097/ico.0000000000003129
- 发表时间:2023
- 期刊:
- 影响因子:2.8
- 作者:Woodward,MariaA;Niziol,LeslieM;Ballouz,Dena;Lu,Ming-Chen;Kang,Linda;Thibodeau,Alexa;Singh,Karandeep
- 通讯作者:Singh,Karandeep
Impact of Scleral Contact Lens Use on the Rate of Corneal Transplantation for Keratoconus.
- DOI:10.1097/ico.0000000000002388
- 发表时间:2021-01
- 期刊:
- 影响因子:2.8
- 作者:Ling JJ;Mian SI;Stein JD;Rahman M;Poliskey J;Woodward MA
- 通讯作者:Woodward MA
Algorithm Variability in Quantification of Epithelial Defect Size in Microbial Keratitis Images.
- DOI:10.1097/ico.0000000000002258
- 发表时间:2020-05
- 期刊:
- 影响因子:2.8
- 作者:Kriegel MF;Huang J;Ashfaq HA;Niziol LM;Preethi M;Tan H;Tuohy MM;Patel TP;Prajna V;Woodward MA
- 通讯作者:Woodward MA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Anneke Woodward其他文献
Maria Anneke Woodward的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Anneke Woodward', 18)}}的其他基金
Quantifying Microbial Keratitis to Predict Outcomes: An Imaging and Epidemiologic Approach
量化微生物角膜炎以预测结果:影像学和流行病学方法
- 批准号:
10357921 - 财政年份:2020
- 资助金额:
$ 5.97万 - 项目类别:
Quantifying Microbial Keratitis to Predict Outcomes: An Imaging and Epidemiologic Approach
量化微生物角膜炎以预测结果:影像学和流行病学方法
- 批准号:
10604249 - 财政年份:2020
- 资助金额:
$ 5.97万 - 项目类别:
相似海外基金
The epidemiology of transmissible antimicrobial resistance among Shigella species
志贺菌属中传播性抗菌药物耐药性的流行病学
- 批准号:
MR/X000648/1 - 财政年份:2024
- 资助金额:
$ 5.97万 - 项目类别:
Research Grant
Intended and unintended consequences of the ZnO ban from pig diets on antimicrobial resistance, post-weaning diarrhoea and the microbiome
猪日粮中禁用氧化锌对抗菌素耐药性、断奶后腹泻和微生物组的有意和无意的影响
- 批准号:
BB/Y003861/1 - 财政年份:2024
- 资助金额:
$ 5.97万 - 项目类别:
Research Grant
Engineering Nature-based Solutions to Tackle Antimicrobial Resistance
工程基于自然的解决方案来解决抗菌素耐药性
- 批准号:
EP/Y003101/1 - 财政年份:2024
- 资助金额:
$ 5.97万 - 项目类别:
Research Grant
Roles of emerging pollutants in spreading antimicrobial resistance
新出现的污染物在传播抗菌素耐药性方面的作用
- 批准号:
DE240100842 - 财政年份:2024
- 资助金额:
$ 5.97万 - 项目类别:
Discovery Early Career Researcher Award
Environmental Reservoirs and Antimicrobial Resistance in Non-tuberculosis Mycobacteria: A Genomic Investigation
非结核分枝杆菌的环境储库和抗菌素耐药性:基因组研究
- 批准号:
502471 - 财政年份:2024
- 资助金额:
$ 5.97万 - 项目类别:
A novel anti-biofilm peptide from fish for the combat against antimicrobial resistance
一种来自鱼类的新型抗生物膜肽,用于对抗抗菌素耐药性
- 批准号:
MR/Y503393/1 - 财政年份:2024
- 资助金额:
$ 5.97万 - 项目类别:
Research Grant
Active one health surveillance in LMICs to monitor and predict Antimicrobial Resistance Using Metagenomics (ALARUM)
在中低收入国家中开展主动单一健康监测,利用宏基因组学 (ALARUM) 监测和预测抗菌药物耐药性
- 批准号:
MR/Y034287/1 - 财政年份:2024
- 资助金额:
$ 5.97万 - 项目类别:
Research Grant
Intended and unintended consequences of the ZnO ban from pig diets on antimicrobial resistance, post-weaning diarrhoea and the microbiome.
猪日粮中禁用氧化锌对抗菌素耐药性、断奶后腹泻和微生物组的有意和无意的影响。
- 批准号:
BB/Y004108/1 - 财政年份:2024
- 资助金额:
$ 5.97万 - 项目类别:
Research Grant
A Cell-Free Toolbox to Anticipate, Learn and Counter Antimicrobial Resistance
预测、学习和对抗抗菌素耐药性的无细胞工具箱
- 批准号:
BB/Y005074/1 - 财政年份:2024
- 资助金额:
$ 5.97万 - 项目类别:
Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 5.97万 - 项目类别:
Research Grant














{{item.name}}会员




