Process Scale-up for Rapid Naphthenic Acid Removal from Oil sands Process Waters (OSPW).
从油砂工艺用水 (OSPW) 中快速去除环烷酸的工艺放大。
基本信息
- 批准号:NE/K000497/1
- 负责人:
- 金额:$ 13.28万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With worldwide production of light crude oil reserves expected to last ~50 yrs, there is a need to exploit alternative fuel resources e.g. oil sands. The vast oil-sand resources in N & S America are already being exploited, resulting in large-scale environmental pollution. During bitumen extraction from oil sands, large volumes of wastewaters (tailings) are produced that are stored in vast settling ponds. Currently ~840 million m3 of tailings have accumulated in Canada alone. There are several problems with tailings ponds: vast amounts of biogenic greenhouse gases are emitted (e.g. 43,000 m3 / day CH4 from one pond), they have very slow consolidation (settling) of the fine tailings solids, which may take decades. Tailings storage poses huge environmental risks due to the presence of high concentrations of toxic compounds known as naphthenic acids (NAs). NAs are complex mixtures of aliphatic & aromatic acids that are highly toxic to many organisms including humans. NAs also block/ corrode pipes/ processing equipment causing further pollution and billion-dollar losses to the industry. Thus, removing NA contamination is important to the global economy, environment and human health. Microbial treatment of NAs has clear cost-environmental advantages. However, the transformation of NAs is complex and influenced by a combination of microbial interactions, biogeochemical factors and the physical-chemical properties of the NAs. Our previous work showed the more recalcitrant NAs have high molecular weights, and are highly branched. This is of environmental concern as these more highly branched NAs may accumulate in the environment. Recently, we developed a bioreactor that achieved 87% NA removal within days. Our bioreactor treatment also increased tailings sedimentation rates. Although our prototype gravel bed bioreactor is a significant advance for the rapid removal of NAs on a lab-scale, we lack information as to whether it can operate as efficiently (for both NA removal & detoxification) under field-scale processing conditions and with several different waste feeds. Since each operator uses a different NA extraction method, the resulting wastewaters have different physical-chemical characteristics and contain different NA compositions/concentrations. It is thus crucial to test the bioreactor technology in a scale-up process and measure the efficacy of NA removal, detoxification and increased sedimentation, in relation to different wastewaters. Once validated under field-scale trials, the technology will allow operators to recycle wastewater, increase sedimentation rates and reduce the amount of stored tailings, thus reducing capital/ storage costs and environmental risk. Our proposed project involves an international collaboration that integrates the process-scale-up facilities and expertise at the Oil Sands Tailings Research Facility (OSTRF), University of Alberta (UoA), expertise and facilities in process-scale up modeling and analytical chemistry, University of Calgary (UoC), access to field sites and different process feeds (DuPont, Syncrude, Suncor (via UoC), Shell Canada pus other operators (via Alberta Environmental (AE) and expertise for implementing the technology to end users via the Albertan Government Regulator, AE. Overall aim: to develop our optimized bioreactor technology and process into a cost-effective system, that can remove NAs (both amount & toxicity) from different wastewaters at the field-scale. Specific Aims: 1) To quantify bioreactor effectiveness for NA removal and NA detoxification (including metabolite toxicity) from different wastewaters (i.e. from different operators) at lab-, intermediate and field-scale; 2) To investigate the effectiveness of the bioreactor technology for increasing sedimentation rates at each scale; 3) Characterize changes in microbial community structure during treatment (at each scale) to ensure microbial community integrity is maintained throughout.
由于世界范围内的轻质原油储量预计可维持50年左右,因此有必要开发替代燃料资源,如油砂。北美和南美巨大的油砂资源已经被开发,造成了大规模的环境污染。在从油砂中提取沥青的过程中,会产生大量的废水(尾矿),这些废水被储存在巨大的沉淀池中。目前,仅在加拿大就积累了约8.4亿立方米的尾矿。尾矿库存在几个问题:排放大量的生物温室气体(例如,一个尾矿库排放4.3万立方米/天的CH4),尾矿库的细粒尾矿库固体固结(沉淀)非常缓慢,可能需要几十年的时间。由于存在高浓度的有毒化合物环烷酸(NAs),尾矿储存带来了巨大的环境风险。NAs是脂肪和芳香酸的复杂混合物,对包括人类在内的许多生物都有剧毒。NAs还阻塞/腐蚀管道/加工设备,造成进一步的污染和数十亿美元的工业损失。因此,去除NA污染对全球经济、环境和人类健康都具有重要意义。微生物处理NAs具有明显的成本-环境优势。然而,NAs的转化是复杂的,受到微生物相互作用、生物地球化学因素和NAs的物理化学性质的综合影响。我们之前的工作表明,更顽固的NAs具有高分子量,并且具有高度分支。这是一个环境问题,因为这些高度分支的NAs可能会在环境中积累。最近,我们开发了一种生物反应器,可以在几天内去除87%的NA。我们的生物反应器处理也提高了尾矿沉降率。虽然我们的原型砾石床生物反应器在实验室规模上是快速去除NA的重大进步,但我们缺乏关于它是否能在现场规模的处理条件下以及在几种不同的废物进料下有效运行(去除和解毒)的信息。由于每个运营商使用不同的NA提取方法,因此产生的废水具有不同的物理化学特性,并且含有不同的NA组成/浓度。因此,在规模放大过程中测试生物反应器技术并测量NA去除、解毒和增加沉淀的效果,对于不同的废水至关重要。一旦在现场规模试验中得到验证,该技术将允许运营商回收废水,提高沉淀率,减少储存的尾矿数量,从而降低资本/储存成本和环境风险。我们提议的项目涉及国际合作,整合阿尔伯塔大学(UoA)油砂尾矿研究设施(OSTRF)的工艺放大设施和专业知识,卡尔加里大学(UoC)工艺放大建模和分析化学的专业知识和设施,进入现场和不同的工艺原料(杜邦,辛克鲁德,森科尔(通过UoC),壳牌加拿大公司通过艾伯塔省环境公司(AE)与其他运营商合作,并通过艾伯塔省政府监管机构AE向最终用户实施该技术。总体目标:将我们优化的生物反应器技术和工艺发展成为一个具有成本效益的系统,可以在现场规模上从不同的废水中去除NAs(数量和毒性)。具体目标:1)量化生物反应器在实验室、中间和现场规模上对不同废水(即来自不同操作人员)的NA去除和NA解毒(包括代谢物毒性)的有效性;2)研究生物反应器技术在提高各尺度沉积速率方面的有效性;3)描述处理过程中(在每个尺度上)微生物群落结构的变化,以确保微生物群落的完整性始终保持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biodegradation of alkyl branched aromatic alkanoic naphthenic acids by Pseudomonas putida KT2440
- DOI:10.1016/j.ibiod.2011.11.008
- 发表时间:2013-07-01
- 期刊:
- 影响因子:4.8
- 作者:Johnson, Richard J.;Smith, Ben E.;Whitby, Corinne
- 通讯作者:Whitby, Corinne
Exploring the capacity for anaerobic biodegradation of polycyclic aromatic hydrocarbons and naphthenic acids by microbes from oil-sands-process-affected waters
- DOI:10.1016/j.ibiod.2014.12.016
- 发表时间:2016-03-01
- 期刊:
- 影响因子:4.8
- 作者:Folwell, Benjamin D.;McGenity, Terry J.;Whitby, Corinne
- 通讯作者:Whitby, Corinne
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Corinne Whitby其他文献
Corinne Whitby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Corinne Whitby', 18)}}的其他基金
Commercialisation of Bioreactor Process Technology
生物反应器工艺技术的商业化
- 批准号:
NE/M005712/1 - 财政年份:2015
- 资助金额:
$ 13.28万 - 项目类别:
Research Grant
The role of lateral exchange in modulating the seaward flux of CNP
横向交换在调节 CNP 向海通量中的作用
- 批准号:
NE/J011959/1 - 财政年份:2012
- 资助金额:
$ 13.28万 - 项目类别:
Research Grant
Development of an optimized naphthenic acid bioremediation strategy in OSPW.
OSPW 中优化环烷酸生物修复策略的开发。
- 批准号:
NE/I001352/1 - 财政年份:2010
- 资助金额:
$ 13.28万 - 项目类别:
Research Grant
Investigating the ecology, activity and interactions of microorganisms bioremediating aquatic ecosystems contaminated with recalcitrant compounds.
研究微生物对被顽固化合物污染的水生生态系统进行生物修复的生态学、活性和相互作用。
- 批准号:
NE/H017542/1 - 财政年份:2010
- 资助金额:
$ 13.28万 - 项目类别:
Training Grant
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Battery Materials R&D Centre of Excellence, UK: Validating the lithium refining process flowsheet and designing a facility for rapid scale up
电池材料研究
- 批准号:
10077163 - 财政年份:2023
- 资助金额:
$ 13.28万 - 项目类别:
BEIS-Funded Programmes
Scale-up of a new microemulsion epoxidation process
新型微乳液环氧化工艺的放大
- 批准号:
573909-2022 - 财政年份:2022
- 资助金额:
$ 13.28万 - 项目类别:
University Undergraduate Student Research Awards
Understanding the impact of the engineering environment on transient transfection and process scale-up
了解工程环境对瞬时转染和工艺放大的影响
- 批准号:
2734114 - 财政年份:2022
- 资助金额:
$ 13.28万 - 项目类别:
Studentship
Optimization and Scale-Up of Graphene Oxide (GO) Ink Production Process
氧化石墨烯 (GO) 油墨生产工艺的优化和放大
- 批准号:
CCARD-2022-00637 - 财政年份:2022
- 资助金额:
$ 13.28万 - 项目类别:
CCI Applied Research and Development Grants
Optimization and Scale Up of Origin Materials' Process to Produce Terephthalic acid, 2,5-Furandicarboxylic Acid and Hydrothermal Carbon
对苯二甲酸、2,5-呋喃二甲酸和热液炭原料生产工艺优化及放大
- 批准号:
CCARD-2022-00010 - 财政年份:2022
- 资助金额:
$ 13.28万 - 项目类别:
CCI Applied Research and Development Grants
EVBR: Development and scale-up of a highly efficient lithium-ion battery recycling process
EVBR:高效锂离子电池回收工艺的开发和规模化
- 批准号:
10030111 - 财政年份:2022
- 资助金额:
$ 13.28万 - 项目类别:
Collaborative R&D
Scale Up and Optimization of the Fermentation Process for the Production of SARSCoV-2 RBD for Large Scale Serological Testing
用于大规模血清学检测的 SARSCoV-2 RBD 生产发酵工艺的扩大和优化
- 批准号:
567665-2021 - 财政年份:2022
- 资助金额:
$ 13.28万 - 项目类别:
Applied Research and Development Grants - Level 2
Scale Up and Optimization of the Fermentation Process for the Production of SARSCoV-2 RBD for Large Scale Serological Testing
用于大规模血清学检测的 SARSCoV-2 RBD 生产发酵工艺的扩大和优化
- 批准号:
567665-2021 - 财政年份:2021
- 资助金额:
$ 13.28万 - 项目类别:
Applied Research and Development Grants - Level 2
Scale-up and techno-economic validation of a biobased monomer production process (based on a novel synthetic biotechnology platform) for use in a new generation of highly functional and biodegradable bioplastic polymers (BioMonomer-Scale)
生物基单体生产工艺(基于新型合成生物技术平台)的放大和技术经济验证,用于新一代高功能和可生物降解的生物塑料聚合物(BioMonomer-Scale)
- 批准号:
72163 - 财政年份:2020
- 资助金额:
$ 13.28万 - 项目类别:
Feasibility Studies
Scale up and Optimization of the Production Process of Plantee's pH Sensitive Polymer for Fishing Gear Material
Plantee渔具材料pH敏感聚合物生产工艺放大及优化
- 批准号:
556036-2020 - 财政年份:2020
- 资助金额:
$ 13.28万 - 项目类别:
Applied Research and Development Grants - Level 1