Reducing uncertainty in flood prediction: the representation of vegetation in hydraulic models

减少洪水预测的不确定性:水力模型中植被的表示

基本信息

  • 批准号:
    NE/K005200/1
  • 负责人:
  • 金额:
    $ 7.15万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

The summer 2007 flooding in England was the country's largest peacetime emergency sinceWorld War II, with 13 deaths, over 55,000 homes & businesses flooded & an associatedinsurance cost of over £3 billion. Prior to 2007 floods, the UK had experienced a numberof significant flood events over the recent past which have included amongst others; 1)the Easter 1998 floods of Northampton & surrounding towns in the Midlands when 4,200homes were flooded in a 1:50 year event &; 2) the winter 2005 floods of Carlisle, a 1:200year event, when 3 people lost their lives & 1,800 properties were flooded. Following the2007 floods the Government commissioned the Pitt Review to discover the lessons thatneeded to be learnt to manage future flood risk. The key observation reported within thePitt Review relevant to this application is that practices which were undertaken to managethe river corridor; namely dredging, debris removal & notably vegetation clearance, were nolonger being performed as frequently, in order to maintain the ecological diversity of the riverfollowing the Water Framework Directive. This has substantially reduced the capacity of the river channel & has thus increased the potential of flooding. This is set within the contextof the risk of flooding within the UK increasing into the future, with climate change models(UKCIP09) predicting that winters will be ~25% wetter, with an increase in extreme rainfallevents. Flood defences in the UK are managed by the Environment Agency. In order to managethese resources we require knowledge of the capacity of river channels & associatedfloodplains. Aquatic vegetation is present in many UK rivers & this reduces the capacity ofthe channel that causes a reduction in flow velocity, which in turn produces higher waterlevels per unit discharge, thus increasing the risk of flooding. Therefore, there is a needto develop our understanding of how vegetation partitions discharge between changesin velocity & depth & how, in turn, this impacts upon the discharge carrying capacity of achannel, namely conveyance, to better manage flood prediction & prevention within the UK.This proposal argues that we can now measure topography to a high resolution & precision& incorporate it into flood models explicitly. This is not the case for vegetation, & thereremains a lack of understanding of how to represent the influence of vegetation on fluvialsystem function. Indeed, the vast majority of uncertainty in flood model predictions stem fromthe influence of vegetation on conveyance. In order to move away from an empirical basedapproach to the parameterisation of vegetation resistance, a new understanding of theflow & turbulence production is necessary to be able to re-formulated a dynamic vegetationroughness treatment for flood models & thus reduce the uncertainty in flood predictions. Thiswill be achieved by undertaking high resolution experiments in the laboratory in conjunctionwith the development of a new three dimensional model that is capable of predicting boththe flow & the plant movement. The model will be validated using the experimental data& then the two data sets will be combined to enable a new formulation of the drag causedby the vegetation. This new understanding of the influence of vegetation of drag will beincorporated into an industry standard flood prediction model. An existing flood examplewill be used to develop & test the model as this will allow us to; 1) assess how well this newmodeling approach improves model predictions &; 2) disentangle parameterization & dataerror in flood models & enable us to assess what uncertainty needs to be addressed nextgeneration of predictive flood models.
2007年夏天英格兰发生的洪水是该国自二战以来和平时期最大的紧急情况,造成13人死亡,超过55,000个家庭和企业被洪水淹没,相关保险费用超过30亿英镑。在2007年洪水之前,英国在最近经历了许多重大的洪水事件,其中包括;1) 1998年复活节北安普顿及中部周边城镇的洪水,4200户家庭被洪水淹没,这是一场1:50年的事件;2) 2005年冬季卡莱尔的洪水,这是一个1:20 00年的事件,当时有3人丧生,1800处财产被淹没。在2007年洪水之后,政府委托皮特审查,以发现管理未来洪水风险需要吸取的教训。皮特评论中报告的与此应用相关的关键观察结果是,为管理河流走廊而采取的措施;即疏浚,清除垃圾,特别是清除植被,不再经常进行,以保持河流的生态多样性,遵循水框架指令。这大大降低了河道的容量,从而增加了洪水的可能性。这是在英国未来洪水风险增加的背景下设定的,气候变化模型(UKCIP09)预测,冬季将多雨25%,极端降雨事件也会增加。英国的防洪工程由环境署管理。为了管理这些资源,我们需要了解河道和相关洪泛平原的容量。英国许多河流中都有水生植物,这降低了河道的容量,导致流速降低,从而产生更高的单位流量水位,从而增加了洪水的风险。因此,有必要发展我们对植被如何在流速和深度变化之间划分流量的理解,以及反过来,这如何影响通道的流量承载能力,即输送,以更好地管理英国境内的洪水预测和预防。该提案认为,我们现在可以测量地形以高分辨率和精度,并将其明确地纳入洪水模型。植被的情况并非如此,对于如何表示植被对河流系统功能的影响仍然缺乏理解。事实上,洪水模型预测中的绝大多数不确定性源于植被对输送的影响。为了从基于经验的方法转向植被阻力的参数化,有必要对流动和湍流产生有一个新的理解,以便能够重新制定洪水模型的动态植被粗糙度处理,从而减少洪水预测的不确定性。这将通过在实验室进行高分辨率实验,并开发一种新的三维模型来实现,该模型能够预测水流和植物的运动。该模型将使用实验数据进行验证,然后将两个数据集结合起来,以实现由植被引起的阻力的新公式。这种对植被拖曳影响的新认识将被纳入工业标准的洪水预测模型。现有的洪水实例将用于开发和测试模型,因为这将使我们能够;1)评估这种新的建模方法对模型预测的改善程度&;2)解开洪水模型中的参数化和数据误差,使我们能够评估下一代预测洪水模型需要解决的不确定性。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-resolution numerical modelling of flow-vegetation interactions
水流与植被相互作用的高分辨率数值模拟
  • DOI:
    10.1080/00221686.2014.948502
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Marjoribanks T
  • 通讯作者:
    Marjoribanks T
On validating predictions of plant motion in coupled biomechanical-flow models
验证耦合生物力学流动模型中植物运动的预测
  • DOI:
    10.1080/00221686.2015.1110627
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Marjoribanks T
  • 通讯作者:
    Marjoribanks T
Dynamic drag modeling of submerged aquatic vegetation canopy flows.
水下水生植被冠层流的动态阻力建模。
  • DOI:
    10.1201/b17133-73
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    T. Marjoribanks;R. Hardy;S. Lane;D. Parsons
  • 通讯作者:
    D. Parsons
On the evolution and form of coherent flow structures over a gravel bed: Insights from whole flow field visualization and measurement
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Parsons其他文献

2020-Vision: understanding climate (in)action through the emotional lens of loss
2020-愿景:通过损失的情感视角理解气候(行动)
  • DOI:
    10.5871/jba/009s5.029
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Jones;F. Halstead;Katie Parsons;H. Lê;L. Bùi;C. Hackney;Daniel Parsons
  • 通讯作者:
    Daniel Parsons
Machine learning for satellite-based sea-state prediction in an offshore windfarm
  • DOI:
    10.1016/j.oceaneng.2021.109280
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Evdokia Tapoglou;Rodney M. Forster;Robert M. Dorrell;Daniel Parsons
  • 通讯作者:
    Daniel Parsons

Daniel Parsons的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Parsons', 18)}}的其他基金

EPSRC Capital Award for Core Equipment 2022/23 - UnMet Demand
EPSRC 核心设备资本奖 2022/23 - 未满足的需求
  • 批准号:
    EP/X035433/1
  • 财政年份:
    2023
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Research Grant
SediSound: Novel acoustic instrumentation for quantifying and characterising multiphase flows
SediSound:用于量化和表征多相流的新型声学仪器
  • 批准号:
    EP/X042014/1
  • 财政年份:
    2023
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Research Grant
THE EVOLUTION OF GLOBAL FLOOD HAZARD AND RISK [EVOFLOOD]
全球洪水灾害和风险的演变 [EVOFLOOD]
  • 批准号:
    NE/S015795/2
  • 财政年份:
    2022
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Research Grant
NERC Discipline Hopping for Discovery Science 2022
NERC 2022 年发现科学学科跳跃
  • 批准号:
    NE/X018091/1
  • 财政年份:
    2022
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Research Grant
How do deep-ocean turbidity currents behave that form the largest sediment accumulations on Earth?
深海浊流如何形成地球上最大的沉积物堆积?
  • 批准号:
    NE/R001960/2
  • 财政年份:
    2022
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Research Grant
THE EVOLUTION OF GLOBAL FLOOD HAZARD AND RISK [EVOFLOOD]
全球洪水灾害和风险的演变 [EVOFLOOD]
  • 批准号:
    NE/S015795/1
  • 财政年份:
    2021
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Research Grant
TIMBER: Managing riverine flood risk & habitat diversity with in-stream wood
木材:管理河流洪水风险
  • 批准号:
    NE/V008803/1
  • 财政年份:
    2020
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Research Grant
How was a thousand kilometre cable-breaking submarine flow triggered by an exceptional Congo River flood?
刚果河特大洪水是如何引发数千公里电缆断裂的海底水流的?
  • 批准号:
    NE/V004387/1
  • 财政年份:
    2020
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Research Grant
How do deep-ocean turbidity currents behave that form the largest sediment accumulations on Earth?
深海浊流如何形成地球上最大的沉积物堆积?
  • 批准号:
    NE/R001960/1
  • 财政年份:
    2019
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Research Grant
The resilience and sustainability of the Mekong delta to changes in water and sediment fluxes (RAMESES)
湄公河三角洲对水和沉积物通量变化的恢复力和可持续性 (RAMESES)
  • 批准号:
    NE/P014704/1
  • 财政年份:
    2017
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Research Grant

相似国自然基金

应用ISOCS监测侵蚀区土壤中137Cs,210Pbex,7Be的适用性
  • 批准号:
    40701099
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
空间数据不确定性的若干问题研究
  • 批准号:
    40352002
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

UQ4FM: Uncertainty Quantification for Flood Modelling
UQ4FM:洪水建模的不确定性量化
  • 批准号:
    EP/Y000145/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Research Grant
UQ4FM: Uncertainty Quantification for Flood Modelling
UQ4FM:洪水建模的不确定性量化
  • 批准号:
    EP/X041093/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Research Grant
UQ4FM: Uncertainty quantification algorithms for flood modelling
UQ4FM:洪水建模的不确定性量化算法
  • 批准号:
    EP/X040941/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Research Grant
Information provision and the management of transboundary resources
信息提供和跨境资源管理
  • 批准号:
    19K01626
  • 财政年份:
    2019
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: PREEVENTS Track 2: Thresholds and envelopes of rapid ice-sheet retreat and sea-level rise: reducing uncertainty in coastal flood hazards
合作研究:预防事件轨道 2:冰盖快速消退和海平面上升的阈值和范围:减少沿海洪水灾害的不确定性
  • 批准号:
    1663693
  • 财政年份:
    2017
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Continuing Grant
Collaborative Research: PREEVENTS Track 2: Thresholds and envelopes of rapid ice-sheet retreat and sea-level rise: reducing uncertainty in coastal flood hazards
合作研究:预防事件轨道 2:冰盖快速消退和海平面上升的阈值和范围:减少沿海洪水灾害的不确定性
  • 批准号:
    1664013
  • 财政年份:
    2017
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Continuing Grant
Collaborative Research: PREEVENTS Track 2: Thresholds and envelopes of rapid ice-sheet retreat and sea-level rise: reducing uncertainty in coastal flood hazards
合作研究:预防事件轨道 2:冰盖快速消退和海平面上升的阈值和范围:减少沿海洪水灾害的不确定性
  • 批准号:
    1663807
  • 财政年份:
    2017
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Continuing Grant
Quantifying the efficacy of in-situ Natural Flood Management (NFM) through monitoring and model predictions including uncertainty
通过监测和模型预测(包括不确定性)量化现场自然洪水管理 (NFM) 的功效
  • 批准号:
    2474845
  • 财政年份:
    2017
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Studentship
Quantifying the efficacy of in situ Natural Flood Management (NFM) through monitoring and model predictions including uncertainty
通过监测和模型预测(包括不确定性)量化原位自然洪水管理 (NFM) 的功效
  • 批准号:
    NE/P010601/1
  • 财政年份:
    2017
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Training Grant
Quantifying the Uncertainty In Future Flood Hazard Assessment Assuming Climate Change Uncertainties
假设气候变化存在不确定性,量化未来洪水灾害评估的不确定性
  • 批准号:
    1989537
  • 财政年份:
    2017
  • 资助金额:
    $ 7.15万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了