Eco-interactomics: From microbial interactions to the fate of dissolved organic matter in the oceans.

生态相互作用组学:从微生物相互作用到海洋中溶解有机物的命运。

基本信息

  • 批准号:
    NE/K009044/1
  • 负责人:
  • 金额:
    $ 73.56万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Greenhouse gas emissions and the growing concentration of carbon dioxide (CO2) in the atmosphere has become more important as evidence increasingly links this to climate change. One of the big questions for science is how plants, algae and other organisms which are able to remove this CO2 from the atmosphere will respond to increasing concentrations and whether they will be able to offset some of this increase.Half of the atmospheric turnover of CO2 comes from land based vegetation and the other half takes place in the oceans. On land uptake of CO2 by plants is balanced by the CO2 released when they die and decompose. In the oceans more CO2 is removed from the air by photosynthesis than is released by decay. This means the oceans can act as carbon stores and one of the main reasons for this is the production of organic matter by the microorganisms in the oceans which subsequently sinks into deeper waters where it can be retained for decades or even centuries. Understanding the marine microbial food web and how this CO2 storage occurs is vitally important as it will allow us to make predictions about how the oceans will react to increasing concentrations of man-made CO2 in the atmosphere and how this could influence climate change. In the oceans, photosynthetic microorganisms, despite their relatively low abundance (under 10% of total organisms) are the main source of food and energy to sustain the whole ecosystem. These organisms release large amounts of organic matter into the water that can then be broken down and used as a food source by other microorganisms present in the water. These degraders will use most of this organic matter, recycling essential elements into new growth. Nevertheless, part of this organic matter will be converted into less degradable compounds that will sink and be retained in the ocean depths. This study will focus on the pathway followed by organic matter through the marine food web, from primary producers to final degraders, until it is converted into these less-degradable compounds, to determine the flow of carbon through the food web and identify who degrades what and in what order. In stable environments, such as oceans, evolution has pushed free-living organisms to lose vital functions in order to use the scarce resources more effectively. This has resulted in a community of organisms dependent on each other. Thus organisms which photosynthesise are dependent on the degrading organisms which feed off the organic compounds they produce and vice versa. This project will look at how this interaction is occurring at the molecular level and will examine how relations within the microbial food web rely on the secretion of natural products. Microorganisms in the ocean secrete an enormous range of compounds in order to modify or exert an influence on their community and environment. The interactions caused by these secreted products can be friendly or hostile. However, the real function and target of the enormous pool of secreted compounds is largely unknown. Understanding the secreted elements will give a greater understanding of the processes and interactions occurring within the marine microbial ecosystem, something which, given its role in driving the marine food web, we still know very little about. Therefore, one of the major objectives of my project is to gain new insights into how primary producers & degraders interact through their secreted products. The study of these secreted products will identify a large array of novel natural products with interest not only for human health (such as antibiotics, probiotics or bactericides) but also for other industrial activities such as fisheries or energy-producing algae plants.This project will provide a much needed understanding of how microbial communities interact in the oceans and how this can influence the retention of atmospheric carbon in the seas and act as a buffer against increasing CO2 in the atmosphere.
温室气体排放和大气中二氧化碳浓度的增加已变得更加重要,因为越来越多的证据表明这与气候变化有关。科学界面临的一个大问题是,能够从大气中清除二氧化碳的植物、藻类和其他生物如何应对浓度的增加,以及它们是否能够抵消部分增加的二氧化碳。大气中一半的二氧化碳来自陆地植被,另一半发生在海洋中。在陆地上,植物吸收的二氧化碳与它们死亡和分解时释放的二氧化碳相平衡。在海洋中,通过光合作用从空气中去除的二氧化碳比通过腐烂释放的更多。这意味着海洋可以作为碳储存库,其中一个主要原因是海洋中的微生物产生有机物质,这些有机物质随后沉入更深的沃茨,在那里可以保留几十年甚至几个世纪。了解海洋微生物食物网以及这种CO2储存是如何发生的至关重要,因为它将使我们能够预测海洋将如何对大气中人为CO2浓度的增加做出反应,以及这将如何影响气候变化。在海洋中,光合微生物尽管数量相对较少(不到总生物量的10%),但却是维持整个生态系统的主要食物和能量来源。这些生物体将大量有机物质释放到水中,然后可以被水中存在的其他微生物分解并用作食物来源。这些降解者将利用大部分有机物质,将基本元素回收到新的生长中。然而,这些有机物质的一部分将转化为不易降解的化合物,这些化合物将下沉并保留在海洋深处。这项研究将侧重于有机物质通过海洋食物网的途径,从初级生产者到最终降解者,直到它转化为这些不易降解的化合物,以确定碳通过食物网的流动,并确定谁降解了什么以及以什么顺序降解。在稳定的环境中,如海洋,进化已经迫使自由生活的生物体失去重要功能,以便更有效地利用稀缺资源。这导致了一个相互依赖的生物群落。因此,进行光合作用的生物体依赖于以它们产生的有机化合物为食的降解生物体,反之亦然。该项目将研究这种相互作用如何在分子水平上发生,并将研究微生物食物网内的关系如何依赖于天然产物的分泌。海洋中的微生物分泌大量化合物,以改变或影响其群落和环境。由这些分泌产物引起的相互作用可以是友好的或敌对的。然而,大量分泌化合物的真实的功能和靶点在很大程度上是未知的。了解分泌的元素将使我们更好地了解海洋微生物生态系统中发生的过程和相互作用,鉴于其在驱动海洋食物网中的作用,我们仍然知之甚少。因此,我的项目的主要目标之一是获得关于初级生产者和降解者如何通过其分泌产物相互作用的新见解。对这些分泌产物的研究将发现大量不仅对人类健康有益的新型天然产物(例如抗生素,益生菌或杀菌剂),而且还用于其他工业活动,如渔业或能源-这个项目将提供一个非常需要的了解微生物群落如何在海洋中相互作用,以及这如何影响大气中的碳在海洋中的保留,作为大气中二氧化碳增加的缓冲器。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nutrient recycling facilitates long-term stability of marine microbial phototroph-heterotroph interactions.
  • DOI:
    10.1038/nmicrobiol.2017.100
  • 发表时间:
    2017-06-26
  • 期刊:
  • 影响因子:
    28.3
  • 作者:
    Christie-Oleza JA;Sousoni D;Lloyd M;Armengaud J;Scanlan DJ
  • 通讯作者:
    Scanlan DJ
Functional distinctness in the exoproteomes of marine Synechococcus.
  • DOI:
    10.1111/1462-2920.12822
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Christie-Oleza JA;Armengaud J;Guerin P;Scanlan DJ
  • 通讯作者:
    Scanlan DJ
Mechanisms of silver nanoparticle toxicity on the marine cyanobacterium Prochlorococcus under environmentally-relevant conditions
  • DOI:
    10.1016/j.scitotenv.2020.141229
  • 发表时间:
    2020-12-10
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Dedman, Craig J.;Newson, Gabrielle C.;Christie-Oleza, Joseph A.
  • 通讯作者:
    Christie-Oleza, Joseph A.
Investigating the Impact of Cerium Oxide Nanoparticles Upon the Ecologically Significant Marine Cyanobacterium Prochlorococcus
  • DOI:
    10.3389/fmars.2021.668097
  • 发表时间:
    2021-05-19
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Dedman, Craig J.;Rizk, Marwa M., I;Davies, Gemma-Louise
  • 通讯作者:
    Davies, Gemma-Louise
Environmentally relevant concentrations of titanium dioxide nanoparticles pose negligible risk to marine microbes.
  • DOI:
    10.1039/d0en00883d
  • 发表时间:
    2021-04-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dedman CJ;King AM;Christie-Oleza JA;Davies GL
  • 通讯作者:
    Davies GL
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Alexander Christie-Oleza其他文献

Joseph Alexander Christie-Oleza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

An interactomics discovery platform for high value intractable cancer drug targets
针对高价值棘手癌症药物靶标的相互作用组学发现平台
  • 批准号:
    2754240
  • 财政年份:
    2022
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Studentship
Structural Interactomics of virus host relationships
病毒宿主关系的结构相互作用组学
  • 批准号:
    454970352
  • 财政年份:
    2021
  • 资助金额:
    $ 73.56万
  • 项目类别:
    WBP Position
Combatting fungal infections through the discovery and mechanistic elucidation of critical host interactions
通过关键宿主相互作用的发现和机制阐明来对抗真菌感染
  • 批准号:
    442761
  • 财政年份:
    2021
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Operating Grants
Development of an OPTogenetic InteractoMics Assay (OPTIMA)
OPTogenic InteractoMics 检测 (OPTIMA) 的开发
  • 批准号:
    10057519
  • 财政年份:
    2020
  • 资助金额:
    $ 73.56万
  • 项目类别:
Quantitative interactomics of specific types of DNA damage (01)
特定类型 DNA 损伤的定量相互作用组学 (01)
  • 批准号:
    418751096
  • 财政年份:
    2019
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Collaborative Research Centres
Quantitative Interactomics to characterize lncRNPs in vitro and in vivo
体外和体内定量相互作用组学表征 lncRNP
  • 批准号:
    389361745
  • 财政年份:
    2017
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Priority Programmes
An integrated pipeline for next-generation protein interactomics
下一代蛋白质相互作用组学的集成管道
  • 批准号:
    10061613
  • 财政年份:
    2017
  • 资助金额:
    $ 73.56万
  • 项目类别:
RNA-protein interactomics to read the yeast mRNP code
RNA-蛋白质相互作用组学读取酵母 mRNA 代码
  • 批准号:
    313087757
  • 财政年份:
    2016
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Priority Programmes
Analyzing the roles of the Gumby/Fam105b linear deubiquitinase in development and disease
分析 Gumby/Fam105b 线性去泛素酶在发育和疾病中的作用
  • 批准号:
    322142
  • 财政年份:
    2015
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Operating Grants
A network medicine analysis of the tissue-specific interactome
组织特异性相互作用组的网络医学分析
  • 批准号:
    349975
  • 财政年份:
    2015
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了