A demonstration tsunami catastrophe risk model for the insurance industry
保险业示范海啸巨灾风险模型
基本信息
- 批准号:NE/L002752/1
- 负责人:
- 金额:$ 12.38万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Catastrophe risk models ("Cat models") are important tools used by the insurance industry to quantify risks associated with a wide variety of insurance and reinsurance products. The market for Cat models is approximately £400m globally. It is growing as the new EU regulatory framework for the insurance industry (Solvency II) requires insurance companies to display a quantitative understanding of the risks resulting from their sales of insurance products, including an understanding of the uncertainties in the Cat models that they use to assess these risks. At present almost all Cat models are commercial-in-confidence products from 3 companies. A need for more diverse Cat models and open model design is reflected in insurance industry support for the Oasis Loss Modelling Framework for open and transparent catastrophe risk modelling. Oasis is designed to combine hazard model and vulnerability model modules, built by external experts, with standard modules for inputting exposure data and carrying out financial calculations, to produce new, well-validated and Solvency-II compliant Cat models. Furthermore, recent tsunami disasters, most notably the Tohoku 2011 tsunami, have highlighted both the large potential losses to which the insurance industry is exposed in important tsunami-prone regions such as Japan and Cascadia (NW United States of America and Pacific Canada), and the lack of available scientifically sound tsunami Cat models.This application builds upon (i) our existing research on tsunami wave physics models, especially on the rigorous quantification of uncertainties in their outputs using statistical emulation methods, and (ii) an existing proof-of-concept investigation of how to produce tsunami hazard maps, compatible with the Oasis framework, from the advanced tsunami wave physics model VOLNA. We will do this by producing a working tsunami hazard model for the Cascadia region, and a simple empirical tsunami vulnerability model for common building types. These will be combined with Oasis' exposure and financial calculation modules to produce a demonstration tsunami Cat model for Cascadia in a form suitable to be used, at least for test and validation purposes, by the Oasis partner companies in the insurance industry.Our Cascadia tsunami hazard model will be the primary product of the project. Its objectives are: 1. To define, using published geological evidence, the range of possible subduction zone earthquake sources (shapes, kinematics of the ruptures) in Cascadia, and their occurrences. 2. To build a tsunami hazard model for Cascadia with runs from the tsunami model VOLNA as well as the computationally efficient statistical representation of VOLNA to cover the ranges of possible outputs that result from the range of possible earthquake sources. These VOLNA runs will be designed using state-of-the-art design of experiments methods.3. To construct vulnerability curves for buildings that reflect published evidence derived from damage surveys after recent major tsunamis.4. To embed these hazard and vulnerability modules into the Catastrophe modelling platform from the Oasis Loss Modelling Framework. To calculate loss exceedance probability curves for synthetic and given portfolios.5. To propagate the uncertainties in 1-3 into the loss calculations in step 4.6. To provide model & user documentations to enable uptake of the model by the Insurance Industry partners of Oasis.
巨灾风险模型(“Cat模型”)是保险业用来量化与各种保险和再保险产品相关的风险的重要工具。Cat车型的全球市场规模约为4亿英镑。随着新的欧盟保险业监管框架(Solvency II)要求保险公司对其销售保险产品所产生的风险进行定量理解,包括对用于评估这些风险的Cat模型中的不确定性的理解,这种需求正在增长。目前几乎所有的Cat型号都是来自3家公司的商业信赖产品。保险业对Oasis损失建模框架的支持反映了对更多样化的Cat模型和开放模型设计的需求,该框架用于开放和透明的巨灾风险建模。Oasis旨在将外部专家构建的风险模型和漏洞模型模块与用于输入暴露数据和执行财务计算的标准模块相结合,以产生新的、经过良好验证的符合偿付能力ii的Cat模型。此外,最近发生的海啸灾害,尤其是2011年东北地区的海啸,突显了日本和卡斯卡迪亚(美利坚合众国西北部和加拿大太平洋地区)等重要海啸易发地区保险业面临的巨大潜在损失,以及缺乏科学合理的海啸Cat模型。该应用程序建立在(i)我们对海啸波物理模型的现有研究,特别是使用统计模拟方法对其输出的不确定性进行严格量化,以及(ii)现有的概念验证调查,即如何从先进的海啸波物理模型VOLNA中生成与Oasis框架兼容的海啸危害图。为此,我们将为卡斯卡迪亚地区建立一个海啸灾害模型,并为常见建筑类型建立一个简单的海啸脆弱性经验模型。这些将与Oasis的风险敞口和财务计算模块相结合,以一种适合于Oasis在保险行业的合作伙伴公司使用的形式,为Cascadia创建一个示范海啸Cat模型,至少用于测试和验证目的。我们的卡斯卡迪亚海啸灾害模型将是该项目的主要产品。它的目标是:1;利用已发表的地质证据,确定卡斯卡迪亚可能的俯冲带震源范围(破裂的形状、运动学)及其发生情况。2. 利用海啸模型VOLNA的运行量以及VOLNA计算效率的统计表示为Cascadia建立海啸灾害模型,以涵盖可能震源范围产生的可能输出范围。这些VOLNA运行将采用最先进的实验方法设计。3 .构建建筑物的脆弱性曲线,以反映近期大海啸后公布的损害调查证据。将这些危险和脆弱性模块嵌入绿洲损失建模框架的巨灾建模平台。计算合成和给定投资组合的损失超越概率曲线。将1-3中的不确定性传播到步骤4.6中的损失计算中。提供模型和用户文档,使Oasis的保险行业合作伙伴能够采用该模型。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Probabilistic, high-resolution tsunami predictions in northern Cascadia by exploiting sequential design for efficient emulation
通过利用顺序设计进行高效仿真,对卡斯卡迪亚北部进行概率性高分辨率海啸预测
- DOI:10.5194/nhess-21-3789-2021
- 发表时间:2021
- 期刊:
- 影响因子:4.6
- 作者:Salmanidou D
- 通讯作者:Salmanidou D
The VOLNA-OP2 tsunami code (version 1.5)
- DOI:10.5194/gmd-11-4621-2018
- 发表时间:2018-11
- 期刊:
- 影响因子:5.1
- 作者:I. Reguly;Daniel Giles;Devaraj Gopinathan;L. Quivy;Joakim Beck;M. Giles;S. Guillas;F. Dias
- 通讯作者:I. Reguly;Daniel Giles;Devaraj Gopinathan;L. Quivy;Joakim Beck;M. Giles;S. Guillas;F. Dias
Dimension Reduction for Gaussian Process Emulation: An Application to the Influence of Bathymetry on Tsunami Heights
- DOI:10.1137/16m1090648
- 发表时间:2016-03
- 期刊:
- 影响因子:0
- 作者:Xiaoyu Liu;S. Guillas
- 通讯作者:Xiaoyu Liu;S. Guillas
The VOLNA-OP2 Tsunami Code (Version 1.0)
VOLNA-OP2 海啸代码(1.0 版)
- DOI:10.5194/gmd-2018-18
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Reguly I
- 通讯作者:Reguly I
FUNCTIONAL EMULATION OF HIGH RESOLUTION TSUNAMI MODELLING OVER CASCADIA
- DOI:10.1214/18-aoas1142
- 发表时间:2018-12-01
- 期刊:
- 影响因子:1.8
- 作者:Guillas, Serge;Sarri, Andria;Dias, Frederic
- 通讯作者:Dias, Frederic
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Serge Guillas其他文献
Embedding machine-learnt sub-grid variability improves climate model precipitation patterns
嵌入机器学习的子网格变异性改善了气候模式降水模式
- DOI:
10.1038/s43247-024-01885-8 - 发表时间:
2024-11-18 - 期刊:
- 影响因子:8.900
- 作者:
Daniel Giles;James Briant;Cyril J. Morcrette;Serge Guillas - 通讯作者:
Serge Guillas
ParticleDA.jl v.1.0: a distributed particle-filtering data assimilation package
ParticleDA.jl v.1.0:分布式粒子过滤数据同化包
- DOI:
10.5194/gmd-17-2427-2024 - 发表时间:
2024 - 期刊:
- 影响因子:5.1
- 作者:
Daniel Giles;Matthew M. Graham;Mosé Giordano;Tuomas Koskela;Alexandros Beskos;Serge Guillas - 通讯作者:
Serge Guillas
An estimate of global cardiovascular mortality burden attributable to ambient ozone exposure reveals urban-rural environmental injustice
- DOI:
10.1016/j.oneear.2024.08.018 - 发表时间:
2024-10-18 - 期刊:
- 影响因子:
- 作者:
Haitong Zhe Sun;Kim Robin van Daalen;Lidia Morawska;Serge Guillas;Chiara Giorio;Qian Di;Haidong Kan;Evelyn Xiu-Ling Loo;Lynette P. Shek;Nick Watts;Yuming Guo;Alexander T. Archibald - 通讯作者:
Alexander T. Archibald
Embedding machine-learnt sub-grid variability improves climate model biases
嵌入机器学习的子网格变异性可以改善气候模型的偏差
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Daniel Giles;James Briant;Cyril J. Morcrette;Serge Guillas - 通讯作者:
Serge Guillas
Global ranking of the sensitivity of interaction potential contributions within classical molecular dynamics force fields
经典分子动力学力场中相互作用势贡献的敏感性的全球排名
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:9.7
- 作者:
W. Edeling;M. Vassaux;Yiming Yang;S. Wan;Serge Guillas;Peter V. Coveney - 通讯作者:
Peter V. Coveney
Serge Guillas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Serge Guillas', 18)}}的其他基金
Tsunami risk for the Western Indian Ocean: steps toward the integration of science into policy and practice
西印度洋的海啸风险:将科学纳入政策和实践的步骤
- 批准号:
NE/P016367/1 - 财政年份:2017
- 资助金额:
$ 12.38万 - 项目类别:
Research Grant
相似海外基金
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
RAPID: Immediate Responses during a Major Nighttime Tsunami Event
RAPID:重大夜间海啸事件期间的立即响应
- 批准号:
2420022 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
People-Centered Tsunami early Warning for the INdian coastlines (PCTWIN)
印度海岸线以人为本的海啸预警 (PCTWIN)
- 批准号:
NE/Z503496/1 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Research Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325312 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314272 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Continuing Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314270 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Continuing Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314271 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325310 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
A New Tsunami Model Using Physics-Informed Neural Networks (PINNs) for Real-Time Tsunami Simulation
使用物理信息神经网络 (PINN) 进行实时海啸模拟的新海啸模型
- 批准号:
24K08013 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314273 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Continuing Grant