Hybrid data assimilation for coupled atmosphere-ocean models
大气-海洋耦合模型的混合数据同化
基本信息
- 批准号:NE/M001482/1
- 负责人:
- 金额:$ 34.68万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The monitoring of the climate of planet Earth and the possibility to predict environmental changes on time-scales of weeks to months, and even on decadal time-scales, is becoming of increasing importance to society. Changes in phenomena such as floods, droughts and sea-level rise are expected to have a large societal impact, affecting many aspects of human life, including agriculture, provision of flood defences and human health. For policymakers there is a need to understand more accurately how the planet is changing and to have improved predictions of future changes.As part of this goal to increase our knowledge of the Earth, space agencies have invested heavily in Earth observation programmes over recent years, with continued investment planned over the coming decade (for example, the European Space Agency Sentinel satellites, which are being developed as part of the European Earth Observation programme Copernicus). This has led to a huge rise in the number of measurements available from satellites covering many different components of the Earth system, including the atmosphere, ocean, land and cryosphere. The synergistic use of these measurements provides the possibility of an increased understanding of the workings of the whole Earth system and an improved predictive capability. Data assimilation is the science of combining observations from different data sources with a computer model forecast in order to extract the most information from the available measurements. In order to improve the capability of environmental monitoring and prediction, and to make better use of new satellite data, many operational centres, such as the Met Office, are now developing assimilation techniques that use observations of the atmosphere and ocean together in order to estimate the state of the combined system. In order to obtain optimal impact from the measurements it is important to characterize the statistics of the errors in the computer model forecast. In particular, when treating the coupled atmosphere-ocean system, a proper representation of the relationship between the errors in the atmosphere and ocean model forecasts is needed. In this project we will develop new methods for estimating these error statistics and for including this information within data assimilation schemes. The involvement of the Met Office and the European Centre for Medium-range Weather Forecasts in the project will allow rapid transfer of knowledge to operational practice.
对地球气候的监测以及在数周至数月甚至数十年的时间尺度上预测环境变化的可能性,对社会越来越重要。洪水、干旱和海平面上升等现象的变化预计将产生巨大的社会影响,影响到人类生活的许多方面,包括农业、防洪设施和人类健康。对于决策者来说,需要更准确地了解地球的变化情况,并改进对未来变化的预测,作为增加我们对地球的了解这一目标的一部分,空间机构近年来对地球观测方案进行了大量投资,并计划在未来十年继续进行投资(例如,欧洲航天局哨兵卫星,这是作为欧洲地球观测方案哥白尼的一部分而开发的)。这导致卫星提供的测量数据数量大幅增加,覆盖地球系统的许多不同组成部分,包括大气层、海洋、陆地和冰冻圈。协同使用这些测量数据,有可能增进对整个地球系统运作的了解,并提高预测能力。数据同化是将来自不同数据源的观测结果与计算机模型预测相结合的科学,以便从现有测量中提取最多的信息。为了提高环境监测和预测的能力,并更好地利用新的卫星数据,许多业务中心,如气象局,目前正在开发同化技术,将大气层和海洋的观测结果结合起来,以估计这一综合系统的状况。为了从测量中获得最佳影响,描述计算机模型预测中误差的统计特征非常重要。特别是,在处理耦合的大气-海洋系统时,需要适当地表示大气和海洋模式预报误差之间的关系。在这个项目中,我们将开发新的方法来估计这些误差统计,并将这些信息纳入数据同化方案。气象局和欧洲中期天气预报中心参与该项目将使知识迅速转化为业务实践。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amos Lawless其他文献
Marine data assimilation in the UK: the past, the present and the vision for the future
英国的海洋数据同化:过去、现在和未来的愿景
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
J. Skákala;David Ford;Keith Haines;Amos Lawless;Matthew J. Martin;Philip Browne;Marcin Chrust;S. Ciavatta;Alison Fowler;Dan Lea;Matthew R. Palmer;Andrea Rochner;Jennifer Waters;Hao Zuo;Mike Bell;Davi M. Carneiro;Yumeng Chen;Susan Kay;Dale Partridge;Martin Price;Richard Renshaw;Georgy Shapiro;J. While - 通讯作者:
J. While
Amos Lawless的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amos Lawless', 18)}}的其他基金
Covariance regularization in data assimilation for coupled dynamical systems
耦合动力系统数据同化中的协方差正则化
- 批准号:
EP/V061828/1 - 财政年份:2021
- 资助金额:
$ 34.68万 - 项目类别:
Research Grant
Treatment of model bias in coupled atmosphere-ocean data assimilation
大气-海洋耦合资料同化模型偏差的处理
- 批准号:
NE/J005835/1 - 财政年份:2012
- 资助金额:
$ 34.68万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于高频信息下高维波动率矩阵估计及应用
- 批准号:71901118
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
半参数空间自回归面板模型的有效估计与应用研究
- 批准号:71961011
- 批准年份:2019
- 资助金额:16.0 万元
- 项目类别:地区科学基金项目
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
体数据表达与绘制的新方法研究
- 批准号:61170206
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
一类新Regime-Switching模型及其在金融建模中的应用研究
- 批准号:11061041
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:地区科学基金项目
相似海外基金
The Twelfth (12th) Workshop on Meteorological Sensitivity Analysis and Data Assimilation; Lake George, New York; May 19-24, 2024
第十二届(十二届)气象敏感性分析与资料同化研讨会;
- 批准号:
2330336 - 财政年份:2024
- 资助金额:
$ 34.68万 - 项目类别:
Standard Grant
VOLCANIC CLASSIC: VOLCANIC eruptions and CLimAte response - Stratospheric Sulfate isotopes in Ice Cores, data assimilation, and climate sensitivity
火山经典:火山喷发和气候响应 - 冰芯中的平流层硫酸盐同位素、数据同化和气候敏感性
- 批准号:
EP/Z000645/1 - 财政年份:2024
- 资助金额:
$ 34.68万 - 项目类别:
Research Grant
Enhancing Multidisciplinary Team Meetings via AI-Enabled Data Assimilation
通过人工智能支持的数据同化增强多学科团队会议
- 批准号:
IM240100224 - 财政年份:2024
- 资助金额:
$ 34.68万 - 项目类别:
Mid-Career Industry Fellowships
CAREER: Embedded Data Assimilation for Complex Turbulent Reacting Flows
职业:复杂湍流反应流的嵌入式数据同化
- 批准号:
2236904 - 财政年份:2023
- 资助金额:
$ 34.68万 - 项目类别:
Continuing Grant
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
- 批准号:
2246916 - 财政年份:2023
- 资助金额:
$ 34.68万 - 项目类别:
Standard Grant
Study on ensemble forecast using a high-resolution ocean data assimilation system
高分辨率海洋资料同化系统集合预报研究
- 批准号:
23K13174 - 财政年份:2023
- 资助金额:
$ 34.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study on an estimation for instantaneous flow field in real river by data assimilation
数据同化估算真实河流瞬时流场的研究
- 批准号:
23K13410 - 财政年份:2023
- 资助金额:
$ 34.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of weather-dependent adaptive data assimilation method for all-sky satellite radiances for the better understanding of chaotic nature of the atmosphere
开发全天卫星辐射的依赖天气的自适应数据同化方法,以更好地了解大气的混沌性质
- 批准号:
23K13167 - 财政年份:2023
- 资助金额:
$ 34.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of inverse problem analysis for internal damage of materials using data assimilation
利用数据同化开发材料内部损伤反问题分析
- 批准号:
23K17336 - 财政年份:2023
- 资助金额:
$ 34.68万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Data assimilation performance analysis of existing bridges by multi-level computer vision-based measurement
基于多级计算机视觉测量的现有桥梁数据同化性能分析
- 批准号:
23H01487 - 财政年份:2023
- 资助金额:
$ 34.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)