Treatment of model bias in coupled atmosphere-ocean data assimilation
大气-海洋耦合资料同化模型偏差的处理
基本信息
- 批准号:NE/J005835/1
- 负责人:
- 金额:$ 45.28万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is expected that the change in climate over the next century is likely to lead to many more extreme weather events, which will have significant impacts on society. In order to be able to plan for societal developments policy makers need to understand the likely effects of climate change over the coming decade. This information would be useful in planning projects designed to alleviate the effects of climate change, such as flood defences, as well as for more general projects, such as deciding where to build new housing. Scientists are currently developing methods to predict general weather phenomena over time scales of several years using computer simulations of the atmosphere and ocean. However, whereas many advances have been made in recent years in forecasting on time scales of days to weeks, the science of forecasting on much longer time scales is still in its infancy.Recent developments in this area suggest that certain parts of the climate system may be predictable on time scales of several years if we can know more accurately the current state of the atmosphere and ocean throughout the world. Data assimilation is the science of combining observations of the atmosphere or ocean with computer simulations in order to be able to determine more accurately the current conditions and so produce a better forecast. It has been widely used in both weather forecasting and ocean forecasting for many years. However in developing predictions on seasonal to inter-annual time scales we need to simulate the evolution of the atmosphere and ocean together. Determining the current atmospheric and ocean states together is made more difficult in particular by two factors. One is that the atmosphere and ocean evolve on very different time scales and this is not very well handled by current methods of data assimilation. The other factor is that the computer models inevitably contain errors, due to our imperfect knowledge, and these errors are exacerbated when we treat the two systems together. In this project we will develop new data assimilation methods to determine simultaneously the state of the atmosphere and oceans using observed data, taking account of both the different time scales in the two systems and of the unknown errors in the computer models. The direct involvement of the European Centre for Medium-range Weather Forecasts in the project will allow a transfer of knowledge to operational practice.
预计下一个世纪的气候变化很可能导致更多的极端天气事件,这将对社会产生重大影响。为了能够规划社会发展,决策者需要了解气候变化在未来十年可能产生的影响。这一信息将有助于规划旨在减轻气候变化影响的项目,如防洪工程,以及更一般的项目,如决定在何处建造新住房。科学家们目前正在开发利用计算机模拟大气和海洋来预测几年时间尺度上的一般天气现象的方法。然而,尽管近年来在几天到几周的时间尺度上的预测取得了许多进展,但在更长时间尺度上的预测科学仍处于起步阶段,这一领域的最新发展表明,如果我们能够更准确地了解全球大气和海洋的现状,气候系统的某些部分可能在几年的时间尺度上是可以预测的。数据同化是将大气或海洋观测与计算机模拟相结合的科学,以便能够更准确地确定当前条件,从而产生更好的预测。多年来,它已广泛用于天气预报和海洋预报。然而,在发展季节到年际时间尺度的预测时,我们需要同时模拟大气和海洋的演变。特别是由于两个因素,使确定当前大气和海洋状态变得更加困难。一个是大气和海洋在非常不同的时间尺度上演变,这不是很好地处理目前的数据同化方法。另一个因素是,由于我们的知识不完善,计算机模型不可避免地包含错误,当我们将两个系统放在一起时,这些错误会加剧。在这个项目中,我们将开发新的数据同化方法,利用观测数据同时确定大气和海洋的状态,同时考虑到两个系统的不同时间尺度和计算机模型中的未知误差。欧洲中期天气预报中心直接参与该项目,将有助于将知识转化为业务实践。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amos Lawless其他文献
Marine data assimilation in the UK: the past, the present and the vision for the future
英国的海洋数据同化:过去、现在和未来的愿景
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
J. Skákala;David Ford;Keith Haines;Amos Lawless;Matthew J. Martin;Philip Browne;Marcin Chrust;S. Ciavatta;Alison Fowler;Dan Lea;Matthew R. Palmer;Andrea Rochner;Jennifer Waters;Hao Zuo;Mike Bell;Davi M. Carneiro;Yumeng Chen;Susan Kay;Dale Partridge;Martin Price;Richard Renshaw;Georgy Shapiro;J. While - 通讯作者:
J. While
Amos Lawless的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amos Lawless', 18)}}的其他基金
Covariance regularization in data assimilation for coupled dynamical systems
耦合动力系统数据同化中的协方差正则化
- 批准号:
EP/V061828/1 - 财政年份:2021
- 资助金额:
$ 45.28万 - 项目类别:
Research Grant
Hybrid data assimilation for coupled atmosphere-ocean models
大气-海洋耦合模型的混合数据同化
- 批准号:
NE/M001482/1 - 财政年份:2015
- 资助金额:
$ 45.28万 - 项目类别:
Research Grant
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
运用3D打印和生物反应器构建仿生尿道模型探索Hippo-YAP信号通路调控尿道损伤修复的机制研究
- 批准号:82370684
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于影像代谢重塑可视化的延胡索酸水合酶缺陷型肾癌危险性分层模型的研究
- 批准号:82371912
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
半参数空间自回归面板模型的有效估计与应用研究
- 批准号:71961011
- 批准年份:2019
- 资助金额:16.0 万元
- 项目类别:地区科学基金项目
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
人胆囊源CD63+细胞的干性特征与分化特性的研究
- 批准号:31970753
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
- 批准号:71771224
- 批准年份:2017
- 资助金额:49.0 万元
- 项目类别:面上项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
凯莱流形上的几何流
- 批准号:11771301
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
The Role of Ethnic Racial Discrimination on the Development of Anxious Hypervigilance in Latina Youth
民族种族歧视对拉丁裔青少年焦虑过度警觉的影响
- 批准号:
10752122 - 财政年份:2024
- 资助金额:
$ 45.28万 - 项目类别:
Genomic analysis of the Multiplex, Autozygous Populations in Cerebral Palsy (MAP CP) cohort: a focused approach to a complex disease
脑瘫 (MAP CP) 群体中多重自合子群体的基因组分析:针对复杂疾病的集中方法
- 批准号:
10586755 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别:
Accurate and Reliable Diagnostics for Injured Children: Machine Learning for Ultrasound
为受伤儿童提供准确可靠的诊断:超声机器学习
- 批准号:
10572582 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别:
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别:
Early life stress impacts molecular and network properties that bias the recruitment of pro-stress BLA circuits
早期生活压力会影响分子和网络特性,从而影响促压力 BLA 回路的募集
- 批准号:
10820820 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别:
Characterizing neuroimaging 'brain-behavior' model performance bias in rural populations
表征农村人口神经影像“大脑行为”模型的表现偏差
- 批准号:
10752053 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别:
Effects of estrus cycle stages on murine CDI severity
发情周期阶段对小鼠 CDI 严重程度的影响
- 批准号:
10625792 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别:
Medical University of South Carolina Mentoring Program in Digestive and Liver Diseases
南卡罗来纳医科大学消化和肝脏疾病指导计划
- 批准号:
10747107 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别:
Understanding Genetic Complexity in Spina Bifida
了解脊柱裂的遗传复杂性
- 批准号:
10750235 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别: