Zinc, iron and phosphorus co-limitation in the Ocean (ZIPLOc)
海洋中锌、铁和磷的共同限制 (ZIPLOc)
基本信息
- 批准号:NE/N001079/1
- 负责人:
- 金额:$ 75.7万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Phytoplankton are microscopic plants that live in the sunlit surface ocean. Phytoplankton fix carbon dioxide and use essential nutrients such as nitrate, phosphate and trace metals, such as zinc and iron, via photosynthesis, to produce organic matter. In doing so, marine phytoplankton provide energy to higher trophic levels, such as fish and marine mammals, as well as contribute to the distribution of carbon dioxide between the atmosphere and ocean. Over 40% of the ocean consists of vast remote ecosystems known as subtropical gyres, which are typified by warm surface waters and extremely low nutrient concentrations. Indeed, the activity of phytoplankton is often suppressed by the lack of nutrients. However, due to their vast areal extent, subtropical gyres have a significant impact on the way the ocean cycles carbon and nutrients. This means that any future changes in the activity of subtropical systems will have important impacts on marine resources and how the ocean interacts with the climate and the Earth System. Our present understanding of how phytoplankton activity in the gyres will change in the future in response to climate change is that there will be an overall reduction in the supply of all essential nutrients due to changes in ocean circulation, causing a decline in phytoplankton activity. However, this simplified view ignores both the natural and anthropogenic addition of nitrogen to surface waters, which enhance stocks of nitrate relative to phosphate. In the subtropical North Atlantic, the natural addition of nitrogen via nitrogen fixation causes phosphate to limit phytoplankton growth. In the subtropical North Pacific, recent observations show that the addition of anthropogenic nitrogen via combustion and fertilisers are causing the North Pacific to be driven from a nitrate to a phosphate limited ecosystem. The on-going addition of nitrogen to the subtropical gyre systems from continued anthropogenic sources implies that phosphate scarcity will become an increasing problem over the coming decades. At present, phytoplankton are thought to adapt to phosphate scarcity by producing enzymes that allow them to acquire phosphate from the more abundant pools of dissolved organic phosphorus (DOP). As such, the oceanographic community typically assumes phosphate limitation of phytoplankton activity to be unimportant. In contrast to this prevailing view, our team have found that the ability of phytoplankton to acquire phosphate from DOP can be regulated by the supply of zinc. Zinc is a trace metal that is essential for phytoplankton, but has never before been shown to play such a fundamental role in controlling phytoplankton growth. Much attention has been placed on how the trace metal iron interacts with nitrate and phosphate in the subtropics, but there is now an explicit need to better understand the role of zinc and its interaction with other nutrient cycles and phytoplankton. Our initial work suggests that by controlling the impact of phosphate scarcity, zinc may be the ultimate arbiter of how subtropical gyre ecosystems evolve.Our goal is to combine a field study to the subtropical gyre North Atlantic and use novel techniques to measure how zinc and phosphorus control biological activity. We will then use the latest modelling tools to explore our observations further over decadal timescales and other ocean basins. The North Atlantic gyre is typified by low phosphate and zinc and is therefore an ideal natural laboratory in which to understand how zinc availability may shape future subtropical gyre ecosystems. Our ambitious proposal has the potential to produce a step change in our understanding of how subtropical gyre ecosystems respond to ongoing climate change. Our team combines world leaders in the observation and modelling of nutrients and phytoplankton biological activity and is therefore uniquely placed to deliver this crucial scientific insight.
浮游植物是生活在阳光照射下的海洋表面的微小植物。浮游植物通过光合作用固定二氧化碳,并利用硝酸盐、磷酸盐和微量金属(如锌和铁)等必需营养物质来产生有机物质。在此过程中,海洋浮游植物为鱼类和海洋哺乳动物等高营养级提供能量,并促进二氧化碳在大气和海洋之间的分布。超过40%的海洋由被称为亚热带环流的巨大偏远生态系统组成,其典型特征是温暖的表面沃茨和极低的营养浓度。事实上,浮游植物的活动往往因缺乏营养而受到抑制。然而,由于其广阔的面积范围,亚热带环流对海洋循环碳和营养物质的方式有重大影响。这意味着亚热带系统活动的任何未来变化都将对海洋资源以及海洋与气候和地球系统的相互作用产生重要影响。我们目前对环流中的浮游植物活动今后将如何因气候变化而发生变化的理解是,由于海洋环流的变化,所有必需营养物的供应将全面减少,导致浮游植物活动减少。然而,这种简化的观点忽略了自然和人为的氮添加到地表沃茨,这增加了硝酸盐相对于磷酸盐的库存。在亚热带北大西洋,通过固氮作用自然增加的氮导致磷酸盐限制浮游植物的生长。在亚热带北太平洋,最近的观测表明,通过燃烧和化肥增加人为氮,导致北太平洋从硝酸盐驱动到磷酸盐限制的生态系统。持续人为来源的氮不断增加到亚热带环流系统意味着磷酸盐短缺将成为一个日益严重的问题,在未来几十年。目前,浮游植物被认为是通过产生酶来适应磷酸盐短缺,这些酶使它们能够从更丰富的溶解有机磷(DOP)池中获得磷酸盐。因此,海洋学界通常认为浮游植物活动的磷酸盐限制并不重要。与这种流行的观点相反,我们的团队发现浮游植物从DOP中获得磷酸盐的能力可以通过锌的供应来调节。锌是浮游植物必需的微量金属,但以前从未被证明在控制浮游植物生长方面发挥如此重要的作用。在亚热带地区,微量金属铁如何与硝酸盐和磷酸盐相互作用一直备受关注,但现在明确需要更好地了解锌的作用及其与其他营养循环和浮游植物的相互作用。我们的初步工作表明,通过控制磷酸盐短缺的影响,锌可能是亚热带环流生态系统如何演变的最终仲裁者。我们的目标是联合收割机的实地研究,以北大西洋亚热带环流,并使用新的技术来衡量锌和磷如何控制生物活性。然后,我们将使用最新的建模工具,进一步探索我们在十年时间尺度和其他海洋盆地的观测结果。北大西洋环流以低磷酸盐和锌为代表,因此是了解锌的可用性如何塑造未来亚热带环流生态系统的理想天然实验室。我们雄心勃勃的建议有可能使我们对亚热带环流生态系统如何应对持续气候变化的理解发生重大变化。我们的团队结合了营养物和浮游植物生物活动观察和建模方面的世界领先者,因此在提供这一关键科学见解方面处于独特地位。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GO-SHIP Repeat Hydrography Nutrient Manual: The Precise and Accurate Determination of Dissolved Inorganic Nutrients in Seawater, Using Continuous Flow Analysis Methods
- DOI:10.3389/fmars.2020.581790
- 发表时间:2020-10-30
- 期刊:
- 影响因子:3.7
- 作者:Becker, Susan;Aoyama, Michio;Tanhua, Toste
- 通讯作者:Tanhua, Toste
Co-occurrence of Fe and P stress in natural populations of the marine diazotroph <i>Trichodesmium</i>
海洋固氮生物自然种群中铁和磷胁迫的共存
- DOI:10.5194/bg-2019-493
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Held N
- 通讯作者:Held N
Water mass analysis along 22 °N in the subtropical North Atlantic for the JC150 cruise (GEOTRACES, GApr08)
- DOI:10.1016/j.dsr.2020.103230
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:L. Artigue;F. Lacan;Simon van Gennip;M. Lohan;N. Wyatt;E. Woodward;C. Mahaffey;J. Hopkins;Y. Drillet
- 通讯作者:L. Artigue;F. Lacan;Simon van Gennip;M. Lohan;N. Wyatt;E. Woodward;C. Mahaffey;J. Hopkins;Y. Drillet
Oceanic Micronutrients: Trace Metals that are Essential for Marine Life
- DOI:10.2138/gselements.14.6.385
- 发表时间:2018-12-01
- 期刊:
- 影响因子:4.5
- 作者:Lohan, Maeve C.;Tagliabue, Alessandro
- 通讯作者:Tagliabue, Alessandro
Geoengineered Ocean Vertical Water Exchange Can Accelerate Global Deoxygenation
地球工程海洋垂直水交换可以加速全球脱氧
- DOI:10.1029/2020gl088263
- 发表时间:2020
- 期刊:
- 影响因子:5.2
- 作者:Feng E
- 通讯作者:Feng E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claire Mahaffey其他文献
Claire Mahaffey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Claire Mahaffey', 18)}}的其他基金
Nitrogen fixation in the Arctic Ocean
北冰洋的固氮
- 批准号:
NE/T001240/1 - 财政年份:2023
- 资助金额:
$ 75.7万 - 项目类别:
Research Grant
Can we detect changes in Arctic ecosystems?
我们能否检测到北极生态系统的变化?
- 批准号:
NE/P006035/1 - 财政年份:2017
- 资助金额:
$ 75.7万 - 项目类别:
Research Grant
Microbial assimilation of phosphorus in the subtropical Atlantic Ocean: a molecular approach
亚热带大西洋中磷的微生物同化:分子方法
- 批准号:
NE/J013676/1 - 财政年份:2013
- 资助金额:
$ 75.7万 - 项目类别:
Research Grant
Assessing the role of eddies in exchanging nutrients across the European Shelf
评估涡流在欧洲大陆架营养物质交换中的作用
- 批准号:
NE/J020141/1 - 财政年份:2012
- 资助金额:
$ 75.7万 - 项目类别:
Research Grant
Physical and chemical forcing of diazotrophy in the (sub)-tropical Atlantic Ocean
(亚)热带大西洋固氮营养的物理和化学强迫
- 批准号:
NE/G018782/1 - 财政年份:2010
- 资助金额:
$ 75.7万 - 项目类别:
Research Grant
相似国自然基金
IRON MAN正调控铁信号核心转录因子FIT的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
碳-铁-微生物对滩涂围垦稻田土壤团聚体形成和稳定的调控机制
- 批准号:41977088
- 批准年份:2019
- 资助金额:61.0 万元
- 项目类别:面上项目
铁螯合剂对蛋白酶体抑制剂所致神经元变性的拮抗作用
- 批准号:30670748
- 批准年份:2006
- 资助金额:8.0 万元
- 项目类别:面上项目
含过渡金属聚硅氮烷陶瓷前驱体的合成及其热解研究
- 批准号:50403027
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cast iron catalysis: New catalytic protocols for carbon-phosphorus bond synthesis
铸铁催化:碳磷键合成的新催化方案
- 批准号:
EP/P024254/2 - 财政年份:2023
- 资助金额:
$ 75.7万 - 项目类别:
Fellowship
Modelling the iron, phosphorus, sulphur, carbon nexus in wastewater treatment
模拟废水处理中的铁、磷、硫、碳关系
- 批准号:
RGPIN-2019-04064 - 财政年份:2022
- 资助金额:
$ 75.7万 - 项目类别:
Discovery Grants Program - Individual
EAGER: Exploring Links between Iron and Phosphorus Nutrition of Antarctic Marine Phytoplankton
EAGER:探索南极海洋浮游植物铁和磷营养之间的联系
- 批准号:
2207011 - 财政年份:2022
- 资助金额:
$ 75.7万 - 项目类别:
Standard Grant
Dynamic Changes in Erythrocyte 2,3 DPG as a Driver of Cardiac Dysfunction in End Stage Kidney Disease
红细胞 2,3 DPG 的动态变化是终末期肾病心脏功能障碍的驱动因素
- 批准号:
10254626 - 财政年份:2021
- 资助金额:
$ 75.7万 - 项目类别:
Dynamic Changes in Erythrocyte 2,3 DPG as a Driver of Cardiac Dysfunction in End Stage Kidney Disease
红细胞 2,3 DPG 的动态变化是终末期肾病心脏功能障碍的驱动因素
- 批准号:
10662216 - 财政年份:2021
- 资助金额:
$ 75.7万 - 项目类别:
Role of disrupted polyamine synthesis during CKD-MBD related bone loss
多胺合成中断在 CKD-MBD 相关骨质流失过程中的作用
- 批准号:
10803535 - 财政年份:2021
- 资助金额:
$ 75.7万 - 项目类别:
Dynamic Changes in Erythrocyte 2,3 DPG as a Driver of Cardiac Dysfunction in End Stage Kidney Disease
红细胞 2,3 DPG 的动态变化是终末期肾病心脏功能障碍的驱动因素
- 批准号:
10426221 - 财政年份:2021
- 资助金额:
$ 75.7万 - 项目类别:
Role of disrupted polyamine synthesis during CKD-MBD related bone loss
多胺合成中断在 CKD-MBD 相关骨质流失过程中的作用
- 批准号:
10333851 - 财政年份:2021
- 资助金额:
$ 75.7万 - 项目类别:
The importance of iron redox reactions and mineral transformations for the fate of phosphorus in the environment
铁氧化还原反应和矿物转化对于环境中磷的归宿的重要性
- 批准号:
454914587 - 财政年份:2021
- 资助金额:
$ 75.7万 - 项目类别:
Research Grants
Modelling the iron, phosphorus, sulphur, carbon nexus in wastewater treatment
模拟废水处理中的铁、磷、硫、碳关系
- 批准号:
RGPIN-2019-04064 - 财政年份:2021
- 资助金额:
$ 75.7万 - 项目类别:
Discovery Grants Program - Individual