Time-variability of the ionospheric electric field: solar wind driving and atmospheric feedback
电离层电场的时变性:太阳风驱动和大气反馈
基本信息
- 批准号:NE/P001556/1
- 负责人:
- 金额:$ 51.4万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Earth's atmosphere is a complex system consisting of many layers that interact in controlling its global dynamics. The ionosphere plays a key role in these dynamics, coupling the magnetic environment of geospace - 'the magnetosphere' - above to the neutral environment below. Variability in the coupling of electromagnetic fields and particles between Earth's atmosphere and space are responsible for the phenomenon of 'space weather'. This is recognised by current NERC strategy as an environmental hazard with serious global impacts, but limitations in our understanding of its effects on the atmosphere constrain our prediction capability. Ionospheric electric fields, in particular, play an important role in governing atmospheric dynamics, primarily in the thermosphere below 150 km. This is demonstrated by the UK Met Office seeking to include the thermosphere in their weather and climate model, raising the upper boundary of its Unified Model (MetUM) from 85 km to the region of 120-140 km. In order to achieve this, improved ionospheric electric field models are essential, since existing models characterise only average conditions and have no 'memory' of the prior history of variability. Capturing this variability is critical if realistic predictions of atmospheric dynamics are to be made at these altitudes. We will therefore develop the next generation model of global ionospheric electric fields that will include, for the first time, the inherent time-dependence of their morphology and driving mechanisms. Specifically, we include variability associated with three distinct sources: (i) solar wind driving (ii) dynamical processes in geospace and (iii) atmospheric feedback. Our model will be designed in collaboration with the UK Met Office, for use in their climate and space weather modelling applications such as MetUM.To achieve our goals we will utilise multi-decadal datasets of electric and magnetic field measurements from ionospheric radars and ground magnetometers, and neutral wind measurements by Fabry-Perot interferometers, to study the electrodynamics of the ionosphere, and its coupling to the neutral atmosphere. We will use upstream interplanetary spacecraft data to order our observations not only by the concurrent conditions in geospace, but by the time history of these conditions; persistent plasma and magnetic field structures, and the degree of variability. We will also use geomagnetic measurements to investigate the effects of time-variable internal magnetospheric processes. These include magnetospheric substorms, which excite convection in the ionosphere, inject energetic particles into the atmosphere, and produce the visible aurora, or northern (and southern) lights. Lastly, we will use simultaneous measurements of the electric field and neutral wind to investigate the 'flywheel' effect of the neutral wind dynamo; the ability of neutral winds to maintain the ionospheric electric field after their direct excitation subsides. Incorporating all of these time-variable effects into a new empirical model of the ionospheric electric field will provide a valuable resource for magnetospheric physics, atmospheric modellers, and space plasma physics theorists.
地球大气层是一个复杂的系统,由许多层组成,这些层相互作用控制其全球动态。电离层在这些动力学中起着关键作用,将上方的地球空间磁环境(“磁层”)与下方的中性环境耦合起来。地球大气层和太空之间电磁场和粒子耦合的变化是造成“太空天气”现象的原因。目前的 NERC 战略认为这是一种具有严重全球影响的环境危害,但我们对其对大气影响的理解有限,限制了我们的预测能力。特别是电离层电场在控制大气动力学方面发挥着重要作用,主要是在 150 公里以下的热层中。英国气象局证明了这一点,他们力图将热层纳入其天气和气候模型,将其统一模型 (MetUM) 的上限从 85 公里提高到 120-140 公里。为了实现这一目标,改进电离层电场模型至关重要,因为现有模型仅描述平均条件,并且没有先前变化历史的“记忆”。如果要在这些高度对大气动力学进行现实的预测,捕获这种变化至关重要。因此,我们将开发下一代全球电离层电场模型,该模型将首次包括其形态和驱动机制的固有时间依赖性。具体来说,我们包括与三个不同来源相关的变异性:(i)太阳风驱动(ii)地球空间的动态过程和(iii)大气反馈。我们的模型将与英国气象局合作设计,用于其气候和空间天气建模应用程序,例如 MetUM。为了实现我们的目标,我们将利用电离层雷达和地面磁力计的电场和磁场测量的数十年数据集,以及法布里-珀罗干涉仪的中性风测量数据,来研究电离层的电动力学及其与中性大气的耦合。我们将使用上游行星际航天器数据不仅根据地球空间中的并发条件,而且根据这些条件的时间历史来对我们的观测进行排序;持久等离子体和磁场结构以及变化程度。我们还将使用地磁测量来研究随时间变化的内部磁层过程的影响。其中包括磁层亚暴,它会激发电离层中的对流,将高能粒子注入大气中,并产生可见的极光或北极光(和南极光)。最后,我们将使用电场和中性风的同步测量来研究中性风发电机的“飞轮”效应;中性风在直接激励减弱后维持电离层电场的能力。将所有这些时变效应纳入电离层电场的新经验模型将为磁层物理学、大气建模者和空间等离子体物理理论家提供宝贵的资源。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Time Continuous Measurements of Cusp Upwelling Event Confirmed by Satellite Pass Through Drag Doubling
卫星通过倍阻证实尖点上升流事件的时间连续测量
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Carlson H. C.
- 通讯作者:Carlson H. C.
Spatially Resolved Neutral Wind Response Times During High Geomagnetic Activity Above Svalbard
斯瓦尔巴特群岛上方高地磁活动期间空间分辨中性风响应时间
- DOI:10.1029/2019ja026627
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Billett D
- 通讯作者:Billett D
Comparing high-latitude thermospheric winds from FPI and CHAMP accelerometer measurements
- DOI:10.5194/angeo-2019-57
- 发表时间:2019-04
- 期刊:
- 影响因子:1.9
- 作者:A. Aruliah;M. Förster;R. Hood;I. Mcwhirter;E. Doornbos
- 通讯作者:A. Aruliah;M. Förster;R. Hood;I. Mcwhirter;E. Doornbos
Nightside Ionospheric Convection Asymmetries During the Early Substorm Expansion Phase: Relationship to Onset Local Time
- DOI:10.1002/2017gl075763
- 发表时间:2017-12
- 期刊:
- 影响因子:5.2
- 作者:A. Grocott;H. Laurens;J. Wild
- 通讯作者:A. Grocott;H. Laurens;J. Wild
Statistical Modeling of the Coupled F -Region Ionosphere-Thermosphere at High Latitude During Polar Darkness
极地黑暗期间高纬度F区电离层-热层耦合的统计模型
- DOI:10.1029/2018ja026171
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Dorrian G
- 通讯作者:Dorrian G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adrian Grocott其他文献
Adrian Grocott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adrian Grocott', 18)}}的其他基金
EISCAT_3D: Fine-scale structuring, scintillation, and electrodynamics (FINESSE)
EISCAT_3D:精细结构、闪烁和电动力学 (FINESSE)
- 批准号:
NE/W003015/1 - 财政年份:2022
- 资助金额:
$ 51.4万 - 项目类别:
Research Grant
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003090/1 - 财政年份:2022
- 资助金额:
$ 51.4万 - 项目类别:
Research Grant
Predicting the upper atmospheric response to extremes of space weather forcing
预测高层大气对极端空间天气强迫的响应
- 批准号:
NE/T000937/1 - 财政年份:2020
- 资助金额:
$ 51.4万 - 项目类别:
Research Grant
Space Weather Instrumentation, Measurement, Modelling and Risk: Thermosphere (SWIMMR-T)
空间天气仪器、测量、建模和风险:热层 (SWIMMR-T)
- 批准号:
NE/V00283X/1 - 财政年份:2020
- 资助金额:
$ 51.4万 - 项目类别:
Research Grant
相似国自然基金
Accretion variability and its consequences: from protostars to planet-forming disks
- 批准号:12173003
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CEDAR: Measuring Daily Ionospheric Variability and the 2023 & 2024 Solar Eclipse Ionospheric Impacts Using HamSCI HF Doppler Shift Receivers
合作研究:CEDAR:测量每日电离层变化和 2023 年
- 批准号:
2230346 - 财政年份:2023
- 资助金额:
$ 51.4万 - 项目类别:
Standard Grant
Collaborative Research: CEDAR: Measuring Daily Ionospheric Variability and the 2023 & 2024 Solar Eclipse Ionospheric Impacts Using HamSCI HF Doppler Shift Receivers
合作研究:CEDAR:测量每日电离层变化和 2023 年
- 批准号:
2230345 - 财政年份:2023
- 资助金额:
$ 51.4万 - 项目类别:
Standard Grant
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003317/1 - 财政年份:2022
- 资助金额:
$ 51.4万 - 项目类别:
Research Grant
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003368/1 - 财政年份:2022
- 资助金额:
$ 51.4万 - 项目类别:
Research Grant
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003201/1 - 财政年份:2022
- 资助金额:
$ 51.4万 - 项目类别:
Research Grant
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003384/1 - 财政年份:2022
- 资助金额:
$ 51.4万 - 项目类别:
Research Grant
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003090/1 - 财政年份:2022
- 资助金额:
$ 51.4万 - 项目类别:
Research Grant
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003309/1 - 财政年份:2022
- 资助金额:
$ 51.4万 - 项目类别:
Research Grant
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003325/1 - 财政年份:2022
- 资助金额:
$ 51.4万 - 项目类别:
Research Grant
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003341/1 - 财政年份:2022
- 资助金额:
$ 51.4万 - 项目类别:
Research Grant














{{item.name}}会员




