DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
基本信息
- 批准号:NE/W003368/1
- 负责人:
- 金额:$ 42.94万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
One of the biggest unanswered questions in the solar-terrestrial science that underpins Space Weather research is: How does the high latitude ionosphere vary on small scales in response to driving from above and below? An immediate practical follow-on question would be: what are the impacts of small-scale processes to the larger upper atmosphere environment? The answers to these questions are essential for understanding how Space Weather impacts on society. This area is of growing importance to the UK, as evidenced by recent investment in operational Space Weather forecasting at the Met Office and the inclusion of Space Weather in the National Risk Register. To answer these questions, we need to understand the processes that occur in the region known as the Mesosphere-Lower Thermosphere-Ionosphere (MLTI - 75-200 km altitude) and how they affect the wider coupled ionosphere-upper-atmosphere system. The ionosphere and upper neutral atmosphere are intrinsically linked: perturb one and the other changes. This has implications for our near-Earth space environment where variations in atmospheric density produce changes in the orbits of space debris, increasing the risk of unforeseen collisions; a significant natural hazard as Geospace grows more crowded. Space Weather plays a big role in modifying this region through frictional Joule heating and particle energy deposition but is not the only important driver. The weather in the lower atmosphere drives changes in the ionosphere that can be comparable to external forcing, but the relative contribution is far from understood, as the processes are under-observed. Another barrier to knowing that contribution is our inability to properly account for small scale variability, whether driven from above or below. Upper atmosphere models typically do not resolve this variability, yet we know that not doing so leads to underestimates of the magnitude of atmospheric heating by as much as 40%. This heating is a process that relies both on space weather driving and changes in the neutral atmosphere composition and dynamics. This project will use the brand new, next generation ionospheric radar: EISCAT-3D, located in northern Fennoscandia. This is part funded by NERC. It is capable of imaging a large volume of the local ionosphere and providing measurements on horizontal scales of 1-100 km. It will be unique with high vertical and temporal resolution and multipoint measurements of the ionospheric electric field vector. The field of view of the radar will cover a decent proportion of the auroral zone in latitude, such that results from the measurements made there can be applied to the wider region. We will use the unique capabilities of the radar to quantify the energy that is deposited into the MLTI from space weather events and also measure the impact of small-scale waves that propagate upwards from the lower atmosphere. We will use a range of support instrumentation, including newly deployed optics, and determine how the coupling between the neutral and ionized regimes affect the energy balance. Resolving these processes will let us establish their role in upper atmospheric heating. We will use the E3D observations together with comprehensive upper atmosphere models to determine and apply methods of correcting estimates of heating due to the small-scale changes. Using advanced models with inputs informed by the results of our observations we will determine how the small-scales affect the low altitude satellite debris field in the Earth's outer environment. This Project directly addresses two of the priority areas (and touches on others) that have been identified in the NERC Highlight Topic Announcement of Opportunity, and so answers the key question: How does the high latitude ionosphere vary on small scales in response to driving from above and below?
支撑空间天气研究的日地科学中最大的未解问题之一是:高纬度电离层是如何在小尺度上对来自上方和下方的驱动做出反应的?一个直接实际的后续问题是:小规模过程对较大的高层大气环境有什么影响?这些问题的答案对于理解太空天气如何影响社会至关重要。这一领域对英国来说越来越重要,最近英国气象局在空间天气预报方面的投资以及将空间天气纳入国家风险登记册就证明了这一点。为了回答这些问题,我们需要了解发生在被称为中间层-低层热层-电离层(MLTI - 75-200公里高度)区域的过程,以及它们如何影响更广泛的耦合电离层-高层大气系统。电离层和上层中性大气有着内在的联系:干扰其中一个变化,就会干扰另一个变化。这对我们的近地空间环境有影响,其中大气密度的变化会导致空间碎片轨道的变化,增加不可预见碰撞的风险;随着地球空间变得越来越拥挤,这是一个重大的自然灾害。空间天气通过摩擦焦耳加热和粒子能量沉积在改变这一区域方面发挥了重要作用,但不是唯一重要的驱动因素。低层大气中的天气驱动电离层的变化,这种变化可以与外部强迫相媲美,但由于对这些过程的观测不足,人们对其相对贡献还远未了解。了解这种贡献的另一个障碍是我们无法适当地解释小尺度的变化,无论是来自上方还是下方。高层大气模式通常不能解决这种变化,但我们知道,不这样做会导致对大气升温幅度的低估高达40%。这种加热过程既依赖于空间天气驱动,也依赖于中性大气成分和动力学的变化。该项目将使用全新的下一代电离层雷达:EISCAT-3D,位于芬诺斯坎迪亚北部。这部分是由NERC资助的。它能够对大量的当地电离层进行成像,并提供1-100公里水平尺度的测量。它将具有高垂直和时间分辨率以及电离层电场矢量的多点测量。雷达的视场将覆盖纬度上相当大比例的极光带,这样,在那里进行的测量结果可以应用于更广泛的地区。我们将利用雷达的独特功能来量化从空间天气事件中沉积到MLTI的能量,并测量从低层大气向上传播的小尺度波的影响。我们将使用一系列支持仪器,包括新部署的光学设备,并确定中性和电离状态之间的耦合如何影响能量平衡。解决这些过程将使我们确定它们在高层大气加热中的作用。我们将使用E3D观测和综合高层大气模式来确定和应用校正小尺度变化引起的加热估计的方法。我们将利用先进的模型,根据我们的观测结果提供输入,确定小尺度如何影响地球外部环境中的低空卫星碎片场。该项目直接解决了NERC重点主题公告中确定的两个优先领域(并涉及其他领域),因此回答了关键问题:高纬度电离层如何在小尺度上对来自上方和下方的驾驶做出反应?
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
lensing from small-scale travelling ionospheric disturbances observed using lofar
- DOI:10.1051/swsc/2022030
- 发表时间:2022-09
- 期刊:
- 影响因子:3.3
- 作者:Ben Boyde;A. Wood;G. Dorrian;Richard A Fallows;D. Themens;J. Mielich;S. Elvidge;M. Mevius;P. Zucca;B. Dabrowski;A. Krankowski;C. Vocks;M. Bisi
- 通讯作者:Ben Boyde;A. Wood;G. Dorrian;Richard A Fallows;D. Themens;J. Mielich;S. Elvidge;M. Mevius;P. Zucca;B. Dabrowski;A. Krankowski;C. Vocks;M. Bisi
Traveling Ionospheric Disturbances Induced by the Secondary Gravity Waves From the Tonga Eruption on 15 January 2022: Modeling With MESORAC‐HIAMCM‐SAMI3 and Comparison With GPS/TEC and Ionosonde Data
2022 年 1 月 15 日汤加火山爆发的二次重力波引起的行进电离层扰动:使用 MESORAC – HIAMCM – SAMI3 进行建模并与 GPS/TEC 和电离探空仪数据进行比较
- DOI:10.1029/2023ja031408
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Vadas, Sharon L.;Figueiredo, Cosme;Becker, Erich;Huba, J. D.;Themens, David R.;Hindley, Neil P.;Mrak, Sebastijan;Galkin, Ivan;Bossert, Katrina
- 通讯作者:Bossert, Katrina
What to Do When the F10.7 Goes Out?
F10.7坏了怎么办?
- DOI:10.1029/2022sw003392
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Elvidge S
- 通讯作者:Elvidge S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Elvidge其他文献
Using WACCM-X neutral densities for orbital propagation: Challenges and solutions
使用 WACCM-X 中性密度进行轨道传播:挑战和解决方案
- DOI:
10.1016/j.jsse.2024.04.012 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Matthew K. Brown;Sean Elvidge - 通讯作者:
Sean Elvidge
Sean Elvidge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean Elvidge', 18)}}的其他基金
Space Weather Instrumentation, Measurement, Modelling and Risk: Ionosphere (SWIMMR-I)
空间天气仪器、测量、建模和风险:电离层 (SWIMMR-I)
- 批准号:
NE/V002643/1 - 财政年份:2020
- 资助金额:
$ 42.94万 - 项目类别:
Research Grant
Space Weather Instrumentation, Measurement, Modelling and Risk: Thermosphere (SWIMMR-T)
空间天气仪器、测量、建模和风险:热层 (SWIMMR-T)
- 批准号:
NE/V002708/1 - 财政年份:2020
- 资助金额:
$ 42.94万 - 项目类别:
Research Grant
相似国自然基金
IMPACTS站点土壤铝活化机制研究
- 批准号:40273045
- 批准年份:2002
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CEDAR: Measuring Daily Ionospheric Variability and the 2023 & 2024 Solar Eclipse Ionospheric Impacts Using HamSCI HF Doppler Shift Receivers
合作研究:CEDAR:测量每日电离层变化和 2023 年
- 批准号:
2230346 - 财政年份:2023
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
Collaborative Research: CEDAR: Measuring Daily Ionospheric Variability and the 2023 & 2024 Solar Eclipse Ionospheric Impacts Using HamSCI HF Doppler Shift Receivers
合作研究:CEDAR:测量每日电离层变化和 2023 年
- 批准号:
2230345 - 财政年份:2023
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003317/1 - 财政年份:2022
- 资助金额:
$ 42.94万 - 项目类别:
Research Grant
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003201/1 - 财政年份:2022
- 资助金额:
$ 42.94万 - 项目类别:
Research Grant
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003384/1 - 财政年份:2022
- 资助金额:
$ 42.94万 - 项目类别:
Research Grant
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003090/1 - 财政年份:2022
- 资助金额:
$ 42.94万 - 项目类别:
Research Grant
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003309/1 - 财政年份:2022
- 资助金额:
$ 42.94万 - 项目类别:
Research Grant
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003325/1 - 财政年份:2022
- 资助金额:
$ 42.94万 - 项目类别:
Research Grant
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003341/1 - 财政年份:2022
- 资助金额:
$ 42.94万 - 项目类别:
Research Grant
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003481/1 - 财政年份:2022
- 资助金额:
$ 42.94万 - 项目类别:
Research Grant