Predicting the upper atmospheric response to extremes of space weather forcing
预测高层大气对极端空间天气强迫的响应
基本信息
- 批准号:NE/T000937/1
- 负责人:
- 金额:$ 54.22万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Space weather describes the effects of solar activity on our planet, its atmosphere and space environment. For example, energetic particles from the Sun can impact and damage Earth-orbiting spacecraft. Electric fields driven by solar winds can modify the upper atmosphere causing heating and changing the propagation characteristics of radio waves for communications systems. Rapid changes produced in the Earth's magnetic field can induce electrical currents in grounded technical infrastructure. Understanding space weather is thus an important scientific goal, and given the relatively sparse nature of observatories capable of measuring space weather effects directly, it is clear that a capability to model space weather is required.To model the atmospheric effects of space weather we need to consider the whole atmosphere. Although space weather effects are most apparent at high-altitudes, the dynamics of the upper atmosphere - the thermosphere and ionosphere - are driven both from space ('top-down' forcing) and from the atmospheric layers below ('bottom-up' forcing). Even during extreme space weather events such as geomagnetic storms, model studies have shown that the state of the lower atmosphere can influence the thermospheric response. Electric fields are included in ionosphere-thermosphere models to couple the dynamics of the magnetosphere (the region of near-Earth space controlled by the solar wind), and hence the drivers of space weather, to the neutral atmosphere. Currently, the most state-of-the-art whole atmosphere models include limited and outdated parameterisations of the ionospheric electric field, based on decades old datasets and assumptions, which do not allow for realistic time-variability or extreme events to be captured.We propose to utilise our expertise in exploring and modelling ionosphere-thermosphere electrodynamics to bring state-of-the-art ionospheric electric field inputs to the Whole Atmosphere Community Climate Model - Extended (WACCM-X). We will test the new model configurations by running simulations of pre-selected events for which we have observations and measurements of ionospheric and thermospheric flows, densities, and temperatures. The model configuration that is best able to reproduce the observations will then be used to specify global thermospheric parameters for a range of different space weather drivers during intervals of variable solar wind forcing and geomagnetic activity. Our results will enable us to solve a number of outstanding questions on the thermospheric response to space weather and inform the next generation of whole atmospheric modelling and space weather modelling.
空间天气描述了太阳活动对地球、大气和空间环境的影响。例如,来自太阳的高能粒子可以撞击和损坏绕地球轨道运行的航天器。由太阳风驱动的电场可以改变高层大气,导致加热并改变通信系统无线电波的传播特性。地球磁场产生的快速变化可以在接地的技术基础设施中感应电流。因此,了解空间天气是一个重要的科学目标,鉴于能够直接测量空间天气影响的天文台相对稀少,显然需要有空间天气模型的能力。为了模拟空间天气对大气的影响,我们需要考虑整个大气。尽管空间天气效应在高海拔地区最为明显,但上层大气——热层和电离层——的动力学是由空间(“自上而下”的强迫)和下面的大气层(“自下而上”的强迫)驱动的。即使在地磁风暴等极端空间天气事件中,模式研究也表明,低层大气的状态可以影响热层的响应。电离层-热层模型中包含电场,将磁层(受太阳风控制的近地空间区域)的动力学与中性大气耦合起来,从而成为空间天气的驱动因素。目前,最先进的全大气模型包括有限的和过时的电离层电场参数化,基于几十年的旧数据集和假设,这些数据集和假设不允许捕捉实际的时间变化或极端事件。我们建议利用我们在探索和模拟电离层-热层电动力学方面的专业知识,将最先进的电离层电场输入引入全大气群落气候模型-扩展(WACCM-X)。我们将通过对预先选择的事件进行模拟来测试新的模型配置,我们已经对电离层和热层的流动、密度和温度进行了观测和测量。最能再现观测结果的模式配置将用于在可变的太阳风强迫和地磁活动间隔期间指定一系列不同空间天气驱动因素的全球热层参数。我们的研究结果将使我们能够解决一些关于热层对空间天气响应的悬而未决的问题,并为下一代的全大气模型和空间天气模型提供信息。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mean Energy Flux, Associated Derived Height-Integrated Conductances, and Field-Aligned Current Magnitudes Evolve Differently During a Substorm
平均能量通量、相关导出的高度积分电导和场对准电流强度在亚暴期间变化不同
- DOI:10.1029/2022ja030942
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Carter J
- 通讯作者:Carter J
Ionospheric Plasma Flows Associated with the Formation of the Distorted Nightside End of A Transpolar Arc
与跨极弧扭曲的夜侧端形成相关的电离层等离子体流
- DOI:10.5194/angeo-2021-69
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Nowada M
- 通讯作者:Nowada M
A Model of High Latitude Ionospheric Convection Derived From SuperDARN EOF Model Data
基于SuperDARN EOF模型数据的高纬度电离层对流模型
- DOI:10.1029/2023sw003428
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Lam M
- 通讯作者:Lam M
SuperDARN Observations of the Two Component Model of Ionospheric Convection
电离层对流二分量模型的 SuperDARN 观测
- DOI:10.1029/2022ja031101
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Grocott A
- 通讯作者:Grocott A
Extreme Birkeland Currents Are More Likely During Geomagnetic Storms on the Dayside of the Earth
在地球白天的地磁风暴期间更有可能出现极端伯克兰电流
- DOI:10.1029/2023ja031946
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Coxon J
- 通讯作者:Coxon J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adrian Grocott其他文献
Adrian Grocott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adrian Grocott', 18)}}的其他基金
EISCAT_3D: Fine-scale structuring, scintillation, and electrodynamics (FINESSE)
EISCAT_3D:精细结构、闪烁和电动力学 (FINESSE)
- 批准号:
NE/W003015/1 - 财政年份:2022
- 资助金额:
$ 54.22万 - 项目类别:
Research Grant
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003090/1 - 财政年份:2022
- 资助金额:
$ 54.22万 - 项目类别:
Research Grant
Space Weather Instrumentation, Measurement, Modelling and Risk: Thermosphere (SWIMMR-T)
空间天气仪器、测量、建模和风险:热层 (SWIMMR-T)
- 批准号:
NE/V00283X/1 - 财政年份:2020
- 资助金额:
$ 54.22万 - 项目类别:
Research Grant
Time-variability of the ionospheric electric field: solar wind driving and atmospheric feedback
电离层电场的时变性:太阳风驱动和大气反馈
- 批准号:
NE/P001556/1 - 财政年份:2016
- 资助金额:
$ 54.22万 - 项目类别:
Research Grant
相似海外基金
CEDAR: Characterization of Upper Atmospheric Effects of Hurricanes
CEDAR:飓风高层大气影响的特征
- 批准号:
2330046 - 财政年份:2024
- 资助金额:
$ 54.22万 - 项目类别:
Standard Grant
Searching for Upper Atmospheric Waves at the Edge of Space (SURGE)
寻找太空边缘的高层大气波(SURGE)
- 批准号:
NE/X017842/1 - 财政年份:2023
- 资助金额:
$ 54.22万 - 项目类别:
Fellowship
Collaborative Research: Laboratory and Modeling Studies to Resolve a Grand Challenge for Upper Atmospheric Science
合作研究:实验室和模型研究解决高层大气科学的巨大挑战
- 批准号:
2312192 - 财政年份:2023
- 资助金额:
$ 54.22万 - 项目类别:
Standard Grant
Study of the expansion and contraction of the upper atmosphere realized by the world's first dedicated atmospheric X-ray observation instrument aboard the ISS
国际空间站上的世界首个专用大气X射线观测仪器实现高层大气膨胀和收缩的研究
- 批准号:
23H00151 - 财政年份:2023
- 资助金额:
$ 54.22万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Interstitial pressure sensor to detect fluid status
间隙压力传感器检测液体状态
- 批准号:
10603623 - 财政年份:2023
- 资助金额:
$ 54.22万 - 项目类别:
Effect of meteorology on the upper atmosphere by atmospheric gravity wave
大气重力波对高层大气的气象影响
- 批准号:
22KJ2409 - 财政年份:2023
- 资助金额:
$ 54.22万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Laboratory and Modeling Studies to Resolve a Grand Challenge for Upper Atmospheric Science
合作研究:实验室和模型研究解决高层大气科学的巨大挑战
- 批准号:
2312191 - 财政年份:2023
- 资助金额:
$ 54.22万 - 项目类别:
Standard Grant
A new look at atmospheric dynamics based on a novel diagnostic that can separate upper-level cyclonic and anticyclonic vortices
基于可分离上层气旋和反气旋涡旋的新颖诊断的大气动力学新视角
- 批准号:
22H01292 - 财政年份:2022
- 资助金额:
$ 54.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Understanding the transformation processes of atmospheric environments and tropical cyclone activity through the increase in upper ocean heat content
通过上层海洋热含量的增加了解大气环境和热带气旋活动的转变过程
- 批准号:
22K03725 - 财政年份:2022
- 资助金额:
$ 54.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
To further the understanding of upper atmospheric dynamics using existing and future satellite observations
利用现有和未来的卫星观测进一步了解高层大气动力学
- 批准号:
RGPIN-2018-05940 - 财政年份:2022
- 资助金额:
$ 54.22万 - 项目类别:
Discovery Grants Program - Individual