Identifying the mechanisms and resource use implications of acclimation to high-temperature in marine cyanobacteria.
确定海洋蓝藻适应高温的机制和资源利用影响。
基本信息
- 批准号:NE/P002374/1
- 负责人:
- 金额:$ 79.27万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sea surface temperature has increased by about 0.8 degrees Celcius since 1880 and is projected to increase by another 2 degrees by the year 2100. This will expose the plants and animals that live in tropical waters to temperatures that are warmer than their ancestors have experienced over the past million years. Included in these organisms are the photosynthetic microrganisms that provide the organic matter that supports marine food webs and facilitate transfer of carbon dioxide from the atmosphere to ocean. In tropical waters where temperatures are above about 25 degrees Celcius, phytoplankton are likely to experience direct negative effects of increased temperature on their physiology as they are often exposed to temperatures that are higher than the optimal temperature for their growth. This situation contrasts with that for temperate and polar waters where increased temperature may stimulate growth of the indigenous phytoplankton species or allow more thermally tolerant species to immigrate.Our research addresses the questions "How do cyanobacteria acclimate to temperatures that are supra-optimal for growth?" "What are the implications of this acclimation for their productivity in a warming ocean?" and "How can we account for acclimation to supra-optimal temperatures in models of cyanobacteria growth?" Unlike previous research on short-term (minutes to hours) responses of cyanobacteria, algae and vascular plants to heat shock, we propose to investigate the mechanisms of long-term (days to weeks) acclimation to heat stress and the implications of this acclimation for growth and physiology. As far as we are aware, this will be the first such investigation of long term acclimation to supra-optimal (heat) temperatures for an alga or a cyanobacterium, and as such will complement the more extensive literature on acclimation to sub-optimal (cold) temperatures in plants, algae and cyanobacteria by providing information that is particularly relevant in the face of global warming. We will employ a holistic approach using state-of-the-art methods to obtain this understanding. Transcriptomics will be used to generate the data to construct gene regulatory networks involved in sensing and responding to high temperature. Comparison of these networks amongst species with different tolerances to high temperature will be used to identify communalities and differences that may explain the observed thermal sensitivities. Proteomics and metabolomics will be used to assess the remodeling of cell metabolism that occurs as a consequence of acclimation to high temperature. Measurements of physiological rates, elemental composition (C, N, P) and biochemical composition will be used in an assessment of the system level outcomes of this acclimation in terms of biomass and productivity. The proposed comprehensive assessment of thermal acclimation is both timely and novel, and will contribute to continued excellence in a field where UK researchers make major impacts in a topic of global significance.Our research will help scientists to understand how global warming due to man's activities is changing a fundamental component of Earth's life support system. Marine phytoplankton produce about 50% of the oxygen that we breathe, and play a role over millennial times scales in regulating atmospheric carbon dioxide levels. The information that we obtain will be used in the further development of the increasingly sophisticated models of marine ecology that are used in making projections of how the ocean is responding to climate change. In addition, cyanobacteria are being investigated for their potential use in biotechnology for production of low value products such as protein for animal feed or lipids for production of bio-diesel, as well as high value products including nutritional supplements (carotenoids, fatty acids, polysaccharides, vitamins, sterols) for consumption by humans and other products (dyes, pharmaceuticals, adhesives, surfactants).
自1880年以来,海洋表面温度上升了约0.8摄氏度,预计到2100年将再上升2摄氏度。这将使生活在热带沃茨的植物和动物暴露在比它们的祖先在过去百万年所经历的更温暖的温度下。这些生物包括光合微生物,它们提供有机物质,支持海洋食物网,并促进二氧化碳从大气转移到海洋。在温度高于约25摄氏度的热带沃茨中,浮游植物可能会因温度升高而对其生理产生直接的负面影响,因为它们经常暴露在高于其生长最佳温度的温度下。这种情况与温带和极地沃茨的温度升高可能会刺激本地浮游植物物种的生长或允许更耐热的物种immigration.Our研究解决的问题“蓝藻如何适应超最佳的生长温度?”“在变暖的海洋中,这种适应对它们的生产力有什么影响?我们如何解释蓝藻生长模型中超最适温度的适应?“与以前关于蓝藻、藻类和维管植物对热休克的短期(几分钟到几小时)反应的研究不同,我们建议研究长期(几天到几周)适应热应激的机制,以及这种适应对生长和生理的影响。据我们所知,这将是第一个长期适应超最佳(热)温度的蓝藻或蓝藻,并因此将补充更广泛的文献适应次最佳(冷)温度的植物,藻类和蓝藻提供的信息,特别是在面对全球变暖。我们将采用一种整体的方法,使用最先进的方法来获得这种理解。转录组学将用于产生数据,以构建参与高温传感和响应的基因调控网络。这些网络之间的比较与不同的耐受性,以高温的物种将被用来确定的共性和差异,可以解释所观察到的热敏感性。蛋白质组学和代谢组学将用于评估细胞代谢的重塑,这是适应高温的结果。生理速率,元素组成(C,N,P)和生化组成的测量将用于在生物量和生产力方面评估该驯化的系统水平结果。热适应的综合评估是及时的和新颖的,并将有助于在英国研究人员在一个具有全球意义的主题中产生重大影响的领域继续取得卓越成就。我们的研究将帮助科学家了解由于人类活动导致的全球变暖如何改变地球生命支持系统的基本组成部分。海洋浮游植物产生我们呼吸的氧气的50%,并在千年的时间尺度上调节大气二氧化碳水平。我们获得的信息将用于进一步发展日益复杂的海洋生态模型,用于预测海洋如何应对气候变化。此外,正在研究蓝细菌在生物技术中的潜在用途,以生产低价值产品,如动物饲料的蛋白质或生产生物柴油的脂质,以及高价值产品,包括供人类消费的营养补充剂(类胡萝卜素,脂肪酸,多糖,维生素,甾醇)和其他产品(染料,药物,粘合剂,表面活性剂)。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phytoplankton competition and resilience under fluctuating temperature.
- DOI:10.1002/ece3.9851
- 发表时间:2023-03
- 期刊:
- 影响因子:2.6
- 作者:
- 通讯作者:
Predictions of response to temperature are contingent on model choice and data quality.
- DOI:10.1002/ece3.3576
- 发表时间:2017-12
- 期刊:
- 影响因子:2.6
- 作者:Low-Décarie E;Boatman TG;Bennett N;Passfield W;Gavalás-Olea A;Siegel P;Geider RJ
- 通讯作者:Geider RJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Geider其他文献
Richard Geider的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Geider', 18)}}的其他基金
Resource utilization by phytoplankton: is nitrogen allocation amongst functional catalysts optimized in response to resource limitation?
浮游植物的资源利用:功能催化剂之间的氮分配是否针对资源限制进行了优化?
- 批准号:
NE/G003688/1 - 财政年份:2009
- 资助金额:
$ 79.27万 - 项目类别:
Research Grant
SGER: Assessing Nutrient Limitation of Phytoplankton Photosynthesis
SGER:评估浮游植物光合作用的营养限制
- 批准号:
9300491 - 财政年份:1992
- 资助金额:
$ 79.27万 - 项目类别:
Standard Grant
Iron Limitation and Phytoplankton Photosynthesis: Research Fellowship in Marine Biotechnology
铁限制和浮游植物光合作用:海洋生物技术研究奖学金
- 批准号:
8915084 - 财政年份:1990
- 资助金额:
$ 79.27万 - 项目类别:
Standard Grant
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
- 批准号:82370979
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
- 批准号:82371255
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
- 批准号:82370981
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
- 批准号:82370851
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
- 批准号:82372015
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
- 批准号:82371248
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
- 批准号:82371973
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
相似海外基金
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
- 批准号:
10825737 - 财政年份:2023
- 资助金额:
$ 79.27万 - 项目类别:
Elucidating mechanisms of cellular communication critical for head and neck cancer progression and metastasis.
阐明对头颈癌进展和转移至关重要的细胞通讯机制。
- 批准号:
10752228 - 财政年份:2023
- 资助金额:
$ 79.27万 - 项目类别:
Music4Pain Network: A research network to advance the study of mechanisms underlying the effects of music and music-based interventions on pain.
Music4Pain Network:一个研究网络,旨在推进音乐和基于音乐的疼痛干预措施的影响机制的研究。
- 批准号:
10764417 - 财政年份:2023
- 资助金额:
$ 79.27万 - 项目类别:
Molecular Mechanisms of TRIB1 Regulation of Hepatic Metabolism
TRIB1调节肝脏代谢的分子机制
- 批准号:
10660520 - 财政年份:2023
- 资助金额:
$ 79.27万 - 项目类别:
Project 4:Targeting M2-like Macrophages and MDSC with Myelolytic-Virotherapy
项目 4:利用溶髓病毒疗法靶向 M2 样巨噬细胞和 MDSC
- 批准号:
10885260 - 财政年份:2023
- 资助金额:
$ 79.27万 - 项目类别:
MAGIC tools for genome-wide mosaic analysis with existing Drosophila resources (Equipment Supplement 2023)
利用现有果蝇资源进行全基因组嵌合分析的 MAGIC 工具(设备补充资料 2023)
- 批准号:
10808546 - 财政年份:2023
- 资助金额:
$ 79.27万 - 项目类别:
Project 4:Targeting M2-like Macrophages and MDSC with Myelolytic-Virotherapy
项目 4:利用溶髓病毒疗法靶向 M2 样巨噬细胞和 MDSC
- 批准号:
10885263 - 财政年份:2023
- 资助金额:
$ 79.27万 - 项目类别:
Overcoming mechanisms of therapeutic resistance in pancreatic ductal adenocarcinoma
克服胰腺导管腺癌的治疗耐药机制
- 批准号:
10629062 - 财政年份:2023
- 资助金额:
$ 79.27万 - 项目类别:
Mechanisms that Account for Different Symptom Subtypes of OSA
OSA 不同症状亚型的机制
- 批准号:
10555811 - 财政年份:2023
- 资助金额:
$ 79.27万 - 项目类别: