Database technology for deep marine clastic characterisation: upscaling for impact
用于深海碎屑表征的数据库技术:影响升级
基本信息
- 批准号:NE/P01691X/1
- 负责人:
- 金额:$ 12.78万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The geological characteristics of subsurface sedimentary rocks control the amount of oil, gas and/or water present within them (as hydrocarbon reservoirs or aquifers), and how such fluids will flow. Petroleum geologists build three-dimensional numerical models to assess the likely amount and flow rates of oil and gas and optimum well locations. These models ultimately determine whether hydrocarbon production is successful. (Hydrogeologists develop corresponding geological models to predict water yield or contaminant transport, in order to inform aquifer exploitation and clean-up; such models are also required to assess the feasibility of programmes of underground carbon capture and storage). When these models are built, geologists have available only limited direct subsurface data with which to constrain the type and geometry of subsurface geological bodies and thus their fluid-flow characteristics. To complement the sparse direct data, exposed outcrops of similar types of rocks, or modern sedimentary environments where comparable sediments are deposited, can be used as 'analogues' to hydrocarbon reservoirs or aquifers. These analogues provide proxy information regarding geological features that determine reservoir or aquifer heterogeneity. Within a reservoir or aquifer, these geological heterogeneities exert a primary control on well connectivity, flow rates, and behaviour to production or clean-up strategies, thereby dictating how much oil or gas is likely to be produced from a reservoir, or whether contaminants are successfully removed from the groundwater. Quantitative analogue data on these geological heterogeneities are required as input for constraining geological models of the subsurface. The derivation of this type of data from databases is an integral part of subsurface modelling workflows, but current approaches are inadequate because of the limited volume and quality of data stored in existing databases, and their current poor integration with existing modelling tools.The Leeds IP consists of three different relational databases that contain analogue data about types of rock volumes that constitute the building blocks of geological models of reservoirs or aquifers; each database relates to a particular geological setting. All data are stored in a format that allows quantitative output to be produced, in forms that can be fed into all the common numerical methods used to build models of subsurface heterogeneity. The technology of the IP surpasses similar databases in terms of data quality and format. The fact that a fuller characterisation of sedimentary heterogeneity is achieved by these databases enables the derivation of the output required by existing modelling algorithms: this makes the IP unique in its class.However, the current value of the combined IP is limited by the relative underdevelopment of the Deep Marine Clastic database, and its current inability to integrate fully with software platforms employed to generate and manage geological models of the subsurface, such as Schlumberger's Petrel. Thus, the up-scaling of this database and the development of an interface for the optimal integration of the Deep Marine Clastic database with Petrel are key requirements for making this IP marketable, and leveraging the full value of the integrated databases. Upon successful development, the IP will enable easy access and application of large volumes of high-quality data in the area of Deep Marine Clastics, in parallel with that from other environments. This technology will aid geologists and engineers in the hydrocarbon and water-management industries in the generation of geologically sensible reservoir and aquifer models. The project will be undertaken by Marco Patacci, currently a PDRA at Leeds, and supervised by Bill McCaffrey, who is a sedimentologist and director of the Turbidites Research Group, and Nigel Mountney (sedimentologist).
地下沉积岩的地质特征控制着其中存在的石油,天然气和/或水的数量(如碳氢化合物储层或含水层),以及这些流体将如何流动。石油地质学家建立三维数值模型,以评估石油和天然气的可能数量和流量以及最佳井位。这些模型最终决定碳氢化合物生产是否成功。(水文地质学家开发相应的地质模型,预测水量或污染物迁移,以便为含水层开发和清理提供信息;还需要这些模型来评估地下碳捕获和储存方案的可行性)。在建立这些模型时,地质学家只能利用有限的直接地下数据来约束地下地质体的类型和几何形状,从而约束它们的流体流动特性。为了补充稀疏的直接数据,类似类型岩石的暴露露头,或沉积类似沉积物的现代沉积环境,可用作油气储层或含水层的“模拟物”。这些类似物提供了关于决定储层或含水层非均质性的地质特征的代用信息。在储层或含水层内,这些地质非均质性对油井连通性、流速和生产或清理策略的行为施加主要控制,从而决定了储层可能生产多少石油或天然气,或者污染物是否成功地从地下水中去除。这些地质非均质性的定量模拟数据需要作为约束地下地质模型的输入。从数据库中导出这种类型的数据是地下建模工作流程的组成部分,但是由于存储在现有数据库中的数据的数量和质量有限,利兹IP由三个不同的关系数据库组成,这些数据库包含有关构成地质模型构建块的岩石体积类型的模拟数据水库或含水层;每个数据库都与特定的地质背景有关。所有数据都以允许产生定量输出的格式存储,其形式可以输入用于构建地下非均质性模型的所有常用数值方法。IP技术在数据质量和格式方面优于同类数据库。这些数据库实现了沉积物异质性的更全面表征,这一事实使得能够导出现有建模算法所需的输出:这使得IP在同类中独一无二。然而,由于深海碎屑数据库相对不发达,以及它目前无法与用于生成和管理地下地质模型的软件平台(如斯伦贝谢的Petrel)完全集成。因此,扩大这一数据库的规模,并开发一个界面,使深海碎屑数据库与海燕最佳整合,是使这一知识产权适销对路和充分利用综合数据库价值的关键要求。一旦开发成功,该综合方案将使人们能够与其他环境中的数据并行,方便地获取和应用深海碎屑岩领域的大量高质量数据。这项技术将帮助碳氢化合物和水管理行业的地质学家和工程师生成地质敏感的储层和含水层模型。该项目将由目前在利兹担任PDRA的Marco Patacci负责,并由沉积学家兼浊流研究组主任Bill McCaffrey和沉积学家奈杰尔Mountney监督。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A database solution for the quantitative characterisation and comparison of deep-marine siliciclastic depositional systems
用于深海硅质碎屑沉积系统定量表征和比较的数据库解决方案
- DOI:10.1016/j.marpetgeo.2018.12.023
- 发表时间:2019
- 期刊:
- 影响因子:4.2
- 作者:Cullis S
- 通讯作者:Cullis S
Tectonic Influence on the Geomorphology of Submarine Canyons: Implications for Deep-Water Sedimentary Systems
- DOI:10.3389/feart.2022.836823
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Laura H. Bührig;L. Colombera;Marco Patacci;N. Mountney;W. McCaffrey
- 通讯作者:Laura H. Bührig;L. Colombera;Marco Patacci;N. Mountney;W. McCaffrey
Hierarchical classifications of the sedimentary architecture of deep-marine depositional systems
- DOI:10.1016/j.earscirev.2018.01.016
- 发表时间:2018-04-01
- 期刊:
- 影响因子:12.1
- 作者:Cullis, Sophie;Colombera, Luca;McCaffrey, William D.
- 通讯作者:McCaffrey, William D.
A global analysis of controls on submarine-canyon geomorphology
- DOI:10.1016/j.earscirev.2022.104150
- 发表时间:2022-08
- 期刊:
- 影响因子:12.1
- 作者:Laura H. Bührig;L. Colombera;Marco Patacci;N. Mountney;W. McCaffrey
- 通讯作者:Laura H. Bührig;L. Colombera;Marco Patacci;N. Mountney;W. McCaffrey
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William McCaffrey其他文献
William McCaffrey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William McCaffrey', 18)}}的其他基金
Knowledge to application: meta data approaches to improved geological model conditioning in petroleum industry workflows
知识应用:用于改进石油工业工作流程中地质模型调节的元数据方法
- 批准号:
NE/M007324/1 - 财政年份:2015
- 资助金额:
$ 12.78万 - 项目类别:
Research Grant
Exploiting NERC-funded research to beneficially impact upstream workflows in the petroleum industry
利用 NERC 资助的研究对石油行业的上游工作流程产生有益影响
- 批准号:
NE/J500495/1 - 财政年份:2011
- 资助金额:
$ 12.78万 - 项目类别:
Fellowship
相似国自然基金
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
PET/MR多模态分子影像在阿尔茨海默病炎症机制中的研究
- 批准号:82372073
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Journal of Computer Science and Technology
- 批准号:61224001
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
微制作技术构建组织工程神经支架的研究
- 批准号:81071260
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
Journal of Materials Science & Technology
- 批准号:51024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Computer Science and Technology
- 批准号:61040017
- 批准年份:2010
- 资助金额:4.0 万元
- 项目类别:专项基金项目
对虾白斑综合症病毒(WSSV)感染相关基因及其细胞受体的筛选和鉴定
- 批准号:30700618
- 批准年份:2007
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SBIR Phase I: A Tunable Deep Ultraviolet (UV)-based Polyfluoroalkyl Substance (PFAS) Destruction Technology for Water Treatment
SBIR 第一阶段:用于水处理的可调谐深紫外线 (UV) 多氟烷基物质 (PFAS) 破坏技术
- 批准号:
2335229 - 财政年份:2024
- 资助金额:
$ 12.78万 - 项目类别:
Standard Grant
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
- 批准号:
23K11177 - 财政年份:2023
- 资助金额:
$ 12.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Error Detection of Utterances for Non-native Speakers Using Deep Anomaly Detection Technology
使用深度异常检测技术对非母语人士的话语进行错误检测
- 批准号:
23K11238 - 财政年份:2023
- 资助金额:
$ 12.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 12.78万 - 项目类别:
Wearable, Wireless Deep-tissue Sensing Patch for Continuous Monitoring of Recovery from Microsurgical Tissue Transfer
可穿戴式无线深层组织传感贴片,用于连续监测显微外科组织转移的恢复情况
- 批准号:
10637093 - 财政年份:2023
- 资助金额:
$ 12.78万 - 项目类别:
HERV proteogenomics of narcotic-driven HIV latency
麻醉药驱动的 HIV 潜伏期的 HERV 蛋白质基因组学
- 批准号:
10675341 - 财政年份:2023
- 资助金额:
$ 12.78万 - 项目类别:
Helping Doctors Doctor: Using AI to Automate Documentation and "De-Autonomate" Health Care
帮助医生医生:使用人工智能实现文档自动化和医疗保健“去自动化”
- 批准号:
10701364 - 财政年份:2023
- 资助金额:
$ 12.78万 - 项目类别:
Defining the molecular and radiologic phenotype of progressive RA-ILD
定义进行性 RA-ILD 的分子和放射学表型
- 批准号:
10634344 - 财政年份:2023
- 资助金额:
$ 12.78万 - 项目类别:
Multimodal Label-Free Nanosensor for Single Virus Characterization and Content Analysis
用于单一病毒表征和内容分析的多模式无标记纳米传感器
- 批准号:
10641529 - 财政年份:2023
- 资助金额:
$ 12.78万 - 项目类别:
Toward measures and behavioral trials for effective online AUD recovery support
采取措施和行为试验以提供有效的在线澳元复苏支持
- 批准号:
10643056 - 财政年份:2023
- 资助金额:
$ 12.78万 - 项目类别: