Paleointensity extremes: Dynamic implications and future fields

古强度极值:动态影响和未来领域

基本信息

  • 批准号:
    NE/P017266/1
  • 负责人:
  • 金额:
    $ 66.3万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

I propose to use my recently developed modeling techniques to resolve a fundamental disconnect between measurements of the strength of the ancient geomagnetic field (paleointensity) and theories of Earth's core dynamic and use this to answer outstanding questions about how fast Earth's magnetic field can change and how our protective barrier might change in the foreseeable future.Earth's magnetic field has been protecting our planet for at least 3.4 billion years and, despite being one on the oldest known features of Earth, there remain many aspects of how the field is generated and how it has evolved over time that are poorly understood. This makes is difficult to predict how the field will behave in the future. Currently, our best predications of future variations only extend about 5 years into the future. This is often too short to meet the needs of long terms investments, such as those required for space satellites and ground based power infrastructure, which rely on the shielding provided by the magnetic field.To predict future changes in the geomagnetic field we have to unravel past changes in the field and the physics that governs them. Understanding the evolution of the deep Earth and the physics behind extreme geomagnetic features, such as rapid field changes, are frontiers in paleomagnetic research that have implications for the predictability of our protective barriers future. However, our ability to understand these phenomena is held back by the uncertain reliability of the paleointensity data needed to understand these key features. To push these boundaries forward, we must ensure the fidelity of our observations, which requires a full understanding of the physical behavior that affects paleointensity data. This is especially important for time periods where the observed paleointensities contradict our most advanced understanding of how the magnetic field works.This project will use my newly developed tools to bridge the gap between specimen-level paleointensity data and global geomagnetic field reconstructions, and will take a radically different approach that utilizes "big data" analyses of millions of simulated and real results. Much like a surveyor would assess a building based on the quality of the materials and how they were used to construct the building, I will assess the building blocks of paleointensity data to determine the quality of the results.Armed with this new capability, I will provide a robust assessment of the validity of the Levantine archeomagnetic spikes, which record field intensity changes with rates tens faster than ever observed. Such extreme changes are beyond current dynamo theory and their resolution may have a profound impact on how we understand the dynamics of the outer core. Then, using a next generation geomagnetic field construction spanning the last 4,000 years, I will determine the longevity of the recent decline in dipole field strength and assess how long into the near future the current weakening of Earth's magnetic shield is likely to persist and how it will affect the modern world and the technologies that we all rely on in our daily lives.
我建议使用我最近开发的建模技术来解决古代地磁场强度测量之间的根本脱节(古强度)和地球核心动力学的理论,并利用这一点来回答悬而未决的问题,即地球磁场的变化速度有多快,以及我们的保护屏障在可预见的未来会如何变化。尽管它是地球上已知最古老的特征之一,但它如何产生以及如何随时间演变的许多方面仍然知之甚少。这使得很难预测该领域未来的表现。目前,我们对未来变化的最佳预测只能延续到未来5年左右。这往往是太短,以满足长期投资的需要,如空间卫星和地面电力基础设施所需的,这依赖于磁场提供的屏蔽。为了预测未来的变化在地磁场,我们必须解开过去的变化在该领域和物理支配他们。了解地球深部的演化和极端地磁特征背后的物理学,如快速的磁场变化,是古地磁研究的前沿,对我们未来保护屏障的可预测性有影响。然而,我们理解这些现象的能力被理解这些关键特征所需的古强度数据的不确定可靠性所阻碍。为了推动这些边界向前发展,我们必须确保我们的观察的保真度,这需要充分了解影响古强度数据的物理行为。这一点对于那些观测到的古地磁强度与我们对磁场工作原理的最先进理解相矛盾的时期尤为重要。该项目将使用我新开发的工具来弥合古地磁强度数据与全球地磁场重建之间的差距,并将采取一种完全不同的方法,利用对数百万模拟和真实的结果进行“大数据”分析。就像测量员会根据材料的质量以及它们是如何被用来建造建筑物来评估一座建筑物一样,我将评估古强度数据的组成部分,以确定结果的质量。有了这个新的能力,我将对黎凡特古地磁尖峰的有效性进行可靠的评估,它记录的场强变化比以往观察到的要快几十倍。这种极端的变化超出了当前发电机理论的范围,它们的解决可能会对我们如何理解外核的动态产生深远的影响。然后,使用跨越过去4,000年的下一代地磁场结构,我将确定偶极场强度最近下降的寿命,并评估目前地球磁屏蔽的减弱可能持续多久,以及它将如何影响现代世界和我们日常生活中所依赖的技术。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Paleointensity.org: An Online, Open Source, Application for the Interpretation of Paleointensity Data
  • DOI:
    10.1029/2019gc008791
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Beguin, Annemarieke;Paterson, Greig A.;de Groot, Lennart, V
  • 通讯作者:
    de Groot, Lennart, V
Collective magnetotaxis of microbial holobionts is optimized by the three-dimensional organization and magnetic properties of ectosymbionts.
  • DOI:
    10.1073/pnas.2216975120
  • 发表时间:
    2023-03-07
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Chevrier, Daniel M.;Juhin, Amelie;Menguy, Nicolas;Bolzoni, Romain;Soto-Rodriguez, Paul E. D.;Kojadinovic-Sirinelli, Mila;Paterson, Greig A.;Belkhou, Rachid;Williams, Wyn;Skouri-Panet, Feriel;Kosta, Artemis;Le Guenno, Hugo;Pereiro, Eva;Faivre, Damien;Benzerara, Karim;Monteil, Caroline L.;Lefevre, Christopher T.
  • 通讯作者:
    Lefevre, Christopher T.
Magnetic Domain States and Critical Sizes in the Titanomagnetite Series
钛磁铁矿系列的磁畴状态和临界尺寸
  • DOI:
    10.22541/essoar.170688764.46924474/v1
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cych B
  • 通讯作者:
    Cych B
MCADAM: A continuous paleomagnetic dipole moment model for at least 3.7 billion years
MCADAM:至少 37 亿年的连续古地磁偶极矩模型
  • DOI:
    10.1002/essoar.10512285.1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bono R
  • 通讯作者:
    Bono R
Mapping hydrocarbon charge-points in the Wessex Basin using seismic, geochemistry and mineral magnetics
利用地震、地球化学和矿物磁学绘制威塞克斯盆地碳氢化合物充注点图
  • DOI:
    10.1016/j.marpetgeo.2019.08.042
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    R. Abubakar;A. R. Muxworthy;A. Fraser;M. A. Sephton;J. S. Watson;D. Heslop;G. A. Paterson;P. Southern
  • 通讯作者:
    P. Southern
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Greig Paterson其他文献

Structural control on the shape of intrusions in the Koktokay ore district, Chinese Altai, north western China
中国阿尔泰山可克托凯矿区侵入体形态的构造控制
  • DOI:
    10.1016/j.jsg.2015.06.003
  • 发表时间:
    2016-02
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Ye Tian;Kezhang Qin;Qifeng Zhou;Greig Paterson
  • 通讯作者:
    Greig Paterson

Greig Paterson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Greig Paterson', 18)}}的其他基金

NSFGEO-NERC: The history of the Earth's magnetic field strength over the last five million years: Filling in the southern hemisphere gap
NSFGEO-NERC:过去五百万年地球磁场强度的历史:填补南半球的空白
  • 批准号:
    NE/Y005686/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.3万
  • 项目类别:
    Research Grant
Particles to Planets: Unravelling the history of our magnetic field
从粒子到行星:揭开磁场的历史
  • 批准号:
    NE/W006707/1
  • 财政年份:
    2022
  • 资助金额:
    $ 66.3万
  • 项目类别:
    Research Grant

相似海外基金

Macroeconomic and Financial Modelling in an Era of Extremes
极端时代的宏观经济和金融模型
  • 批准号:
    DP240101009
  • 财政年份:
    2024
  • 资助金额:
    $ 66.3万
  • 项目类别:
    Discovery Projects
Droughts Beyond Hydro-climatological Extremes
超出水文气候极端值的干旱
  • 批准号:
    24K17352
  • 财政年份:
    2024
  • 资助金额:
    $ 66.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
AI4PEX: Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models
AI4PEX:人工智能和机器学习,用于增强地球系统模型中过程和极值的表示
  • 批准号:
    10103109
  • 财政年份:
    2024
  • 资助金额:
    $ 66.3万
  • 项目类别:
    EU-Funded
Rare Event Simulation: Protecting vital infrastructure from flood extremes
罕见事件模拟:保护重要基础设施免受极端洪水影响
  • 批准号:
    DP240101365
  • 财政年份:
    2024
  • 资助金额:
    $ 66.3万
  • 项目类别:
    Discovery Projects
Designing multi-knowledge protocols to transform transboundary policies for hydroclimatic extremes(DEMO TAPE)
设计多知识协议以转变极端水文气候的跨境政策(DEMO TAPE)
  • 批准号:
    EP/Y036905/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.3万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Adaptation to environmental extremes in a great ape
博士论文研究:类人猿对极端环境的适应
  • 批准号:
    2341172
  • 财政年份:
    2024
  • 资助金额:
    $ 66.3万
  • 项目类别:
    Standard Grant
Mapping the neuronal functional architecture underlying appetite control in humans at the extremes of bodyweight
绘制极端体重下人类食欲控制的神经元功能结构
  • 批准号:
    BB/X014207/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.3万
  • 项目类别:
    Research Grant
Reducing Global Catastrophic Risks from Unseen Climate Extremes
减少未曾见过的极端气候带来的全球灾难性风险
  • 批准号:
    MR/X03450X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.3万
  • 项目类别:
    Fellowship
Co-developed Environmental Solutions to Mitigate the Impact of Temperature Extremes on the Health of Vulnerable Populations
共同开发环境解决方案,以减轻极端温度对弱势群体健康的影响
  • 批准号:
    NE/Y503241/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.3万
  • 项目类别:
    Research Grant
Future Rainfall and Flood Extremes (FURFLEX)
未来降雨量和极端洪水 (FURFLEX)
  • 批准号:
    NE/Z000076/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.3万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了