Towards an automated process for assessing reservoir rock quality from seismic imaging
通过地震成像评估储层岩石质量的自动化过程
基本信息
- 批准号:NE/R013411/1
- 负责人:
- 金额:$ 4.19万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will lay the basis of a training model for automated evaluation of georesources using the vast knowledge that can be acquired studying the global catalogue of subsurface datasets held by geo-energy companies.The current global energy climate is characterised by readily available primary fuels at a relatively low cost. This has impacted the geo-energy business with a number of companies currently downsizing with reduction of their workforce. Yet, advances in computational power in the last 20 years has allowed acquisition and releasing of extensive subsurface datasets which provide a deeper understating on where georesources might be found. This means that automated processes will be increasingly important to efficiently analyse and tap the full potential of extensive subsurface datasets now available.This project will focus on the analysis of reservoir units. These deposits represent a very valuable subsurface asset as they have elevated porous space, hence have the potential to contain hydrocarbons, water as well as to absorb carbon dioxide in 'Carbon Capture and Storage' operations. The amount of porous space in reservoir units, hence their efficiency to hold fluids and gas, is a function of a number of physical properties of such deposits. These same physical properties are also thought to control the overall shape and the size of the deposits.With this project, we will analyse the morphology and physical properties of a number of reservoirs so to understand how they are interrelated. In doing so, we would be able to predict the reservoir quality by looking at seismic data, which is a method used in the industry to provide an image of the subsurface. The project will deliver a series of case studies that document how specific reservoir morphologies would indicate good or bad reservoir quality. This would provide the basics to construct, in the future, a training model for automated processes that will be able to efficiently scan large seismic dataset in search of rock with the right shape that indicates a high-quality reservoir.
该项目将利用研究地球能源公司持有的全球地下数据集目录所能获得的大量知识,为自动评估地球资源的培训模型奠定基础。这影响了地球能源业务,许多公司目前正在裁员。然而,在过去20年中,计算能力的进步已经允许获取和发布大量的地下数据集,这些数据集可以更深入地了解地质资源的位置。这意味着自动化流程对于有效分析和挖掘现有大量地下数据集的全部潜力将变得越来越重要。本项目将侧重于油藏单元的分析。这些矿床是非常有价值的地下资产,因为它们具有较高的多孔空间,因此有可能包含碳氢化合物,水以及在“碳捕获和储存”操作中吸收二氧化碳。储层单元中的多孔空间的量,因此它们保持流体和气体的效率,是这种沉积物的许多物理性质的函数。这些相同的物理性质也被认为控制了沉积物的整体形状和大小。通过这个项目,我们将分析一些储层的形态和物理性质,以便了解它们是如何相互关联的。在这样做的过程中,我们将能够通过查看地震数据来预测储层质量,这是一种在行业中用于提供地下图像的方法。该项目将提供一系列案例研究,记录特定的储层形态如何表明储层质量的好坏。这将为将来构建自动化过程的训练模型提供基础,该模型将能够有效地扫描大型地震数据集,以寻找具有指示高质量储层的正确形状的岩石。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring the Predictive Power of Seismic Geomorphology to Assess Reservoir Quality of Gravity-Flow Sandstones.
探索地震地貌预测重力流砂岩储层质量的能力。
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Scarselli N
- 通讯作者:Scarselli N
Exploring the predictive power of seismic geomorphology to assess reservoir quality of deepwater gravity-flow sandstones. A step towards automated interpretation of seismic data?
探索地震地貌学的预测能力来评估深水重力流砂岩的储层质量。
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Scarselli N
- 通讯作者:Scarselli N
Exploring the predictive power of seismic geomorphology to assess sedimentary characteristics of gravity-flow deposits: examples from offshore East and West Africa reservoirs
探索地震地貌学的预测能力以评估重力流沉积物的沉积特征:东非和西非近海水库的例子
- DOI:10.1144/sp525-2021-58
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Scarselli N
- 通讯作者:Scarselli N
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicola Scarselli其他文献
New constraints from in-situ U-Pb ages and fluid inclusions of calcite cement and structural analysis on multiple stages of strike-slip fault activities in the northern Tarim Basin, NW China
- DOI:
10.1016/j.jseaes.2024.106246 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Bingshan Ma;Guanghui Wu;Yintao Zhang;Nicola Scarselli;Bo Yang;Yakun Jiang;Jie Yao;Xingxing Zhao;Meichun Yang;Jian Wang - 通讯作者:
Jian Wang
New insights on the gravity-driven deformation of late Albian – early Turonian stacked delta collapse systems in the Ceduna sub-basin, Bight Basin, southern margin of Australia
- DOI:
10.1016/j.tecto.2021.229184 - 发表时间:
2022-01-20 - 期刊:
- 影响因子:
- 作者:
Basim Ahmed;Ken McClay;Nicola Scarselli;Awad Bilal - 通讯作者:
Awad Bilal
Nicola Scarselli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
An innovative process to enable the automated manufacture of aluminium-tin alloy for machinery bearing elements
一种创新工艺,可实现机械轴承元件用铝锡合金的自动化制造
- 批准号:
10084682 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别:
Collaborative R&D
Transcutaneous Phrenic Nerve Stimulation for Treating Opioid Overdose
经皮膈神经刺激治疗阿片类药物过量
- 批准号:
10681111 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别:
Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
- 批准号:
10629554 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别:
Automated Assessment of Maternal Sensitivity to Infant Distress: Leveraging Wearable Sensors for Substance Use Disorder Prevention and Research
自动评估母亲对婴儿痛苦的敏感性:利用可穿戴传感器进行药物滥用障碍预防和研究
- 批准号:
10777818 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别:
Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
- 批准号:
10725002 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别:
Computational Infrastructure for Automated Force Field Development and Optimization
用于自动力场开发和优化的计算基础设施
- 批准号:
10699200 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别:
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别:
A Connectomic Analysis of a Developing Brain Undergoing Neurogenesis
正在经历神经发生的发育中大脑的连接组学分析
- 批准号:
10719296 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别:
Early-Stage Clinical Trial of AI-Driven CBCT-Guided Adaptive Radiotherapy for Lung Cancer
AI驱动的CBCT引导的肺癌适应性放疗的早期临床试验
- 批准号:
10575081 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别: