Unearthing the role of microbiology in shale gas extraction: a bioreactor approach

挖掘微生物学在页岩气开采中的作用:生物反应器方法

基本信息

  • 批准号:
    NE/R013462/1
  • 负责人:
  • 金额:
    $ 51.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

More than 1300 trillion cubic feet of natural gas is estimated to reside in UK shale formations, kilometers below the surface. This resource has the potential to fuel the nation for decades, and bridge the energy gap between the UK's dependence on coal and oil towards the sustainable renewable energies of the future. Natural gas is locked away in tight spaces within shale. To recover this gas for use as a fuel, these deep shale formations must be artifically fractured by a process called hydraulical fracturing. This process involves pumping millions of litres of water and chemicals into a horizontally-drilled well at high pressure, causing fractures to open through which natural gas can flow unimpeded. Although the government supports the exploitation of the UK's natural gas reserves, there is deep public concern over the environmental risks of hydraulic fracturing, triggered by widely publicised reports of environmental damge from hydraulic fracturing in the US. Whilst a comprehensive independent report deemed the risks of extraction to be low when conducted properly, these concerns must be addressed in order for the full potential of UK economy to benefit from this resource to be met.A number of chemicals that are added to injection water during hydrualic fracturing are known to stimulate microorganisms, and in particular microbial processes that negatively impact on natural gas and its extraction. These processes may lead, for example, to a depletion in additives in the input fluid (each of which serves a particular purpose in making shale gas extraction more efficient), as well as spoiling the natural gas, and causing corrosion of the well infrastructure. Collectively, these 'biofouling' processes lead to increased costs, reduced efficiency and a greater potential environmental impact.The research I propose is designed to tackle these issues. In partnership with a UK oil and gas servicing company, Rawwater Engineering Company Limited, I will test an array of injection fluid chemicals (individually and mixed together) for their potential to stimulate biofouling processes. These experiments will be conducted using bespoke, high pressure bioreactors that are designed to mimic the conditions of UK shale formations. Throughout these experiments I will apply state-of-the-art techniques to monitor changes to the chemistry and microbiology, and in doing so unearth the role of microbiology in the efficiency of shale gas extraction.The results of this research will shed light on the potential for injection fluid chemistry to stimulate biofouling, as well as the types of microorganisms that are responsible for these processes. In partnership with Rawwater and their links to the wider oil and gas industry, these results will allow me to develop diagnostic tools and control strategies that can be applied to field operations in order to maximise the efficiency and hence minise the environmental impact of shale gas extraction, to the benefit of the UK economy.
据估计,超过1300万亿立方英尺的天然气存在于英国页岩地层中,位于地表以下数公里处。这种资源有可能为国家提供数十年的燃料,并弥合英国对煤炭和石油的依赖与未来可持续可再生能源之间的能源差距。天然气被锁在页岩内部的狭小空间中。为了回收这些天然气用作燃料,必须通过一种称为水力压裂的方法对这些深层页岩层进行人工压裂。这一过程涉及在高压下将数百万升水和化学品泵入水平钻井,导致裂缝打开,天然气可以畅通无阻地流动。尽管政府支持开采英国的天然气储量,但公众对水力压裂的环境风险深感担忧,这是由美国水力压裂造成环境损害的广泛报道引发的。虽然一份全面的独立报告认为,在适当的情况下,开采的风险很低,但必须解决这些问题,以使英国经济的全部潜力从这一资源中受益。已知在水力压裂期间添加到注入水中的许多化学品会刺激微生物,特别是对天然气及其开采产生负面影响的微生物过程。这些过程可能导致例如输入流体中的添加剂的耗尽(每种添加剂都用于使页岩气开采更有效的特定目的),以及破坏天然气,并导致井基础设施的腐蚀。总的来说,这些“生物污染”过程导致成本增加,效率降低和更大的潜在环境影响。我建议的研究旨在解决这些问题。在与英国石油和天然气服务公司Rawwater Engineering Company Limited的合作中,我将测试一系列注入流体化学品(单独和混合在一起),以了解它们刺激生物污垢过程的潜力。这些实验将使用定制的高压生物反应器进行,这些生物反应器旨在模拟英国页岩地层的条件。在这些实验中,我将应用最先进的技术来监测化学和微生物的变化,并在此过程中挖掘微生物在页岩气开采效率中的作用。这项研究的结果将揭示注入流体化学刺激生物污垢的潜力,以及负责这些过程的微生物类型。通过与Rawwater及其与更广泛的石油和天然气行业的联系,这些结果将使我能够开发可应用于现场作业的诊断工具和控制策略,以最大限度地提高效率,从而最大限度地减少页岩气开采对环境的影响,从而使英国经济受益。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genome-Resolved Metagenomics Extends the Environmental Distribution of the Verrucomicrobia Phylum to the Deep Terrestrial Subsurface
  • DOI:
    10.1128/msphere.00613-19
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Nixon, Sophie L.;Daly, Rebecca A.;Wrighton, Kelly C.
  • 通讯作者:
    Wrighton, Kelly C.
New microbiological insights from the Bowland shale highlight heterogeneity of the hydraulically fractured shale microbiome.
  • DOI:
    10.1186/s40793-023-00465-1
  • 发表时间:
    2023-02-28
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
  • 通讯作者:
Identification of Persistent Sulfidogenic Bacteria in Shale Gas Produced Waters
  • DOI:
    10.3389/fmicb.2020.00286
  • 发表时间:
    2020-02-21
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Cliffe, Lisa;Nixon, Sophie L.;Lloyd, Jonathan R.
  • 通讯作者:
    Lloyd, Jonathan R.
Microbial communities in freshwater used for hydraulic fracturing are unable to withstand the high temperatures and pressures characteristic of fractured shales
用于水力压裂的淡水中的微生物群落无法承受裂隙页岩的高温和高压特征
  • DOI:
    10.1099/acmi.0.000515.v1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nixon S
  • 通讯作者:
    Nixon S
Limitations of microbial iron reduction under extreme conditions.
  • DOI:
    10.1093/femsre/fuac033
  • 发表时间:
    2022-11-02
  • 期刊:
  • 影响因子:
    11.3
  • 作者:
    Nixon, Sophie L.;Bonsall, Emily;Cockell, Charles S.
  • 通讯作者:
    Cockell, Charles S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sophie Nixon其他文献

Sophie Nixon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sophie Nixon', 18)}}的其他基金

Rules of life in CO2-driven microbial communities: Microbiome engineering for a Net Zero future
二氧化碳驱动的微生物群落的生命规则:净零未来的微生物组工程
  • 批准号:
    BB/Y003195/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Research Grant
Microbial carbon cycling under geological CO2 storage conditions: understanding the rules of life in the engineered subsurface
地质二氧化碳储存条件下的微生物碳循环:了解工程地下的生命规则
  • 批准号:
    BB/V00560X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Fellowship

相似国自然基金

PfAP2-R介导的PfCRT转录调控在恶性疟原虫对喹啉类药物抗性中的作用及机制研究
  • 批准号:
    82372275
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Sestrin2抑制内质网应激对早产儿视网膜病变的调控作用及其机制研究
  • 批准号:
    82371070
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
  • 批准号:
    10680956
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
Candida and Candidiasis Conference 2023
2023 年念珠菌和念珠菌病会议
  • 批准号:
    10682982
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
Impact of Diabetes hyperglycemia on peri-implantitis
糖尿病高血糖对种植体周围炎的影响
  • 批准号:
    10668057
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
Environmental Chemical Impact on the Host-Microbiome Interaction
环境化学对宿主-微生物组相互作用的影响
  • 批准号:
    10641509
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
Malassezia and Candida auris: skin microbiome dysbiosis and de-regulation of cutaneous homeostasis
马拉色菌和耳念珠菌:皮肤微生物群失调和皮肤稳态失调
  • 批准号:
    10661959
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
The Gastrointestinal Epithelium Conference - Interface with the Outside World
胃肠上皮会议 - 与外界的接口
  • 批准号:
    10753753
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
2023 Forsyth Symposium: The Oral Microbiome: Past, Present, and Future
2023 年福赛斯研讨会:口腔微生物组:过去、现在和未来
  • 批准号:
    10753824
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
Multi-omic signatures of gut dysbiosis and cardiovascular comorbidities associated with HIV infection
与 HIV 感染相关的肠道菌群失调和心血管合并症的多组学特征
  • 批准号:
    10762411
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
Macrophage metabolism in diabetes and tuberculosis comorbidity
糖尿病和结核病合并症中的巨噬细胞代谢
  • 批准号:
    10645801
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
Resources and Workforce Development for the Regional Biocontainment Laboratories
区域生物防护实验室的资源和劳动力发展
  • 批准号:
    10791947
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了