Quantifying Oceanic Whitecap Energy Dissipation and Bubble-Mediated Air-Sea Fluxes

量化海洋白浪能量耗散和气泡介导的海气通量

基本信息

  • 批准号:
    NE/T000309/1
  • 负责人:
  • 金额:
    $ 72.57万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

The winds constantly transfer energy from the atmosphere to the global oceans and seas helping to generate surface waves, currents and tearing water droplets directly from the crests of the steepest waves. The interaction of the wind and the surface ocean is an extremely complex process that still remains to be fully understood by ocean scientists and engineers and remains an active area of research. Perhaps the most fundamental consequence of wind blowing over the surface of the oceans is the generation of waves. Our ability to forecast the generation, evolution, and decay of ocean waves is important for the way humans interact with the global oceans. For example, wave forecasts are routinely used to help shipping companies plan the transport of goods and people across the global oceans, marine engineers need to know how often large waves occur and how these waves will interact with the structures they build for use in the ocean, oceanographers need to predict the how ocean waves affect weather and climate, and recreational sailors, swimmers and surfers rely on accurate wave forecasts to safely enjoy the seas and oceans around our coastline.Of particular interest to oceanographers is the energy balance between the wind and the waves. Since the wind acts as the primary source of energy for the waves, there must be a mechanism for dissipating this energy input, otherwise the waves would continue to grow. Part of this energy dissipation occurs along our coastlines where incoming waves break as they enter shallow water, releasing their energy. This release of energy helps to entrain air into the water, to move sediment and sand, and to create chaotic turbulent water motions. However, the vast majority of wave energy is dissipated by waves breaking in the open ocean. These are easy to spot on a windy day because of the bubbles and white foam they produce, commonly called whitecaps. The importance of these whitecaps to how the Earth's climate evolves is an area of huge interest to oceanographers, atmospheric scientists and climate scientists. Within each whitecap there are thousands of bubbles ranging in size from the width of a human hair to about the width of a 5 pence piece. These bubbles are like tiny replicas of the atmosphere that exchange gas with the surrounding water. This bubble-mediated mechanism of gas transfer is very important to how much carbon dioxide is transferred from the atmosphere to the ocean. When each of these bubbles rises to the water surface and bursts it can send tiny sea spray droplets into the atmosphere, much like the fizz of a glass of soda drink that you see when you look at it from the side. When these tiny droplets are in the atmosphere they can help to form clouds over the ocean, transport bacteria from the ocean surface into the atmosphere and can scatter light from the sun. Gaining a better understanding of how much these bubbles and sea spray droplets matter to the Earth's climate is important to make accurate future projections of the Earth's climate.To tackle these difficult questions, our research will use state of the art wave making facilities to replicate breaking ocean waves in the laboratory at Imperial College, and will photograph whitecaps in the Adriatic Sea where we have access to a unique ocean observing platform that is operated by the Italian Institute of Marine Science. We will use a combination of wave height gauges, digital cameras and stereovision image processing techniques, to measure wave energy, photograph the breaking wave foam, and count the number and measure the size of bubbles generated by the breaking waves. These data will be used to improve computer models of ocean waves, and predictions of the exchange of gas between the atmosphere and the oceans for use in computer models of Earth's climate.
风不断地将能量从大气层传递到全球海洋,帮助产生表面波、海流和直接从最陡波峰撕裂水滴。风与海洋表面的相互作用是一个极其复杂的过程,海洋科学家和工程师仍需充分了解,这仍然是一个活跃的研究领域。风吹过海洋表面的最基本的后果也许是波浪的产生。我们预测海浪的生成、演化和衰减的能力对于人类与全球海洋的互动方式至关重要。例如,波浪预报通常用于帮助航运公司计划货物和人员在全球海洋上的运输,海洋工程师需要知道大浪发生的频率以及这些波浪如何与他们在海洋中使用的结构相互作用,海洋学家需要预测海浪如何影响天气和气候,以及休闲水手,泳客和滑浪人士都依赖准确的海浪预报,才能安全地欣赏海岸线附近的海洋。海洋学家特别关注的是风和海浪之间的能量平衡。由于风是波浪的主要能量来源,因此必须有一种机制来消散这种能量输入,否则波浪将继续增长。这种能量耗散的一部分发生在沿着我们的海岸线,当进入浅水时,传入的波浪破碎,释放它们的能量。这种能量的释放有助于将空气带入水中,移动沉积物和沙子,并创造混乱的湍流运动。然而,绝大多数的波浪能量都被开阔海洋中的波浪破碎所耗散。这些在有风的日子很容易被发现,因为它们产生的气泡和白色泡沫,通常被称为白浪。这些白浪对地球气候演变的重要性是海洋学家、大气科学家和气候科学家非常感兴趣的领域。在每一个白帽子里有成千上万个气泡,大小从人的头发丝到5便士硬币的宽度不等。这些气泡就像是大气层的微小复制品,与周围的水交换气体。这种气泡介导的气体转移机制对于有多少二氧化碳从大气转移到海洋非常重要。当这些气泡中的每一个上升到水面并破裂时,它可以将微小的海洋喷雾液滴送入大气中,就像你从侧面看时看到的一杯苏打饮料的嘶嘶声一样。当这些微小的水滴在大气中时,它们可以帮助在海洋上空形成云,将细菌从海洋表面运输到大气中,并可以散射来自太阳的光。更好地了解这些气泡和海洋喷雾液滴对地球气候的影响,对于准确预测未来的地球气候非常重要。为了解决这些难题,我们的研究将使用最先进的造波设备,在帝国理工学院的实验室中复制破碎的海浪,并将拍摄亚得里亚海的白浪,在那里我们可以使用由意大利海洋科学研究所运营的独特海洋观测平台。我们将使用波高仪、数码相机和立体图像处理技术相结合,测量波浪能量,拍摄破碎的波浪泡沫,并计算破碎波浪产生的气泡数量和尺寸。这些数据将用于改进海浪的计算机模型,以及用于地球气候计算机模型的大气和海洋之间气体交换的预测。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The influence of bandwidth on the energetics of intermediate to deep water laboratory breaking waves
  • DOI:
    10.1017/jfm.2023.645
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Rui Cao;E.M. Padilla;A. H. Callaghan
  • 通讯作者:
    Rui Cao;E.M. Padilla;A. H. Callaghan
Spatial Interpolation of Wave Fields Based on Limited Spatial Measurements
  • DOI:
    10.1109/joe.2023.3274176
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    E. Padilla;Rui Cao;A. Callaghan
  • 通讯作者:
    E. Padilla;Rui Cao;A. Callaghan
The links between marine plastic litter and the air-sea flux of greenhouse gases
  • DOI:
    10.3389/fmars.2023.1180761
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    L. Goddijn-Murphy;D. Woolf;R. Pereira;C. Marandino;A. Callaghan;J. Piskozub
  • 通讯作者:
    L. Goddijn-Murphy;D. Woolf;R. Pereira;C. Marandino;A. Callaghan;J. Piskozub
On the short-term response of entrained air bubbles in the upper ocean: a case study in the North Adriatic Sea
关于上层海洋夹带气泡的短期响应:北亚得里亚海的案例研究
  • DOI:
    10.5194/egusphere-2023-2387
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benetazzo A
  • 通讯作者:
    Benetazzo A
A Comparison of Laboratory and Field Measurements of Whitecap Foam Evolution From Breaking Waves
  • DOI:
    10.1029/2023jc020193
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Callaghan,A. H.;Deane,G. B.;Stokes,M. Dale
  • 通讯作者:
    Stokes,M. Dale
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adrian Callaghan其他文献

Adrian Callaghan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Submesoscale Processes Associated with Oceanic Eddies
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    160 万元
  • 项目类别:

相似海外基金

Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 72.57万
  • 项目类别:
    Continuing Grant
Capturing Oceanic Submesoscales, Stirring and Mixing with Sound and Simulations
通过声音和模拟捕捉海洋亚尺度、搅拌和混合
  • 批准号:
    EP/Y014693/1
  • 财政年份:
    2024
  • 资助金额:
    $ 72.57万
  • 项目类别:
    Research Grant
Capturing Oceanic Submesoscales, Stirring, and Mixing with Sound and Simulations
通过声音和模拟捕捉海洋亚尺度、搅拌和混合
  • 批准号:
    MR/X035611/1
  • 财政年份:
    2024
  • 资助金额:
    $ 72.57万
  • 项目类别:
    Fellowship
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318851
  • 财政年份:
    2024
  • 资助金额:
    $ 72.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318854
  • 财政年份:
    2024
  • 资助金额:
    $ 72.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318853
  • 财政年份:
    2024
  • 资助金额:
    $ 72.57万
  • 项目类别:
    Continuing Grant
Involvement of Developing Country Scientists in Activities of the Scientific Committee on Oceanic Research
发展中国家科学家参与海洋研究科学委员会的活动
  • 批准号:
    2346864
  • 财政年份:
    2024
  • 资助金额:
    $ 72.57万
  • 项目类别:
    Continuing Grant
Unraveling oceanic multi-element cycles using single cell ionomics
使用单细胞离子组学揭示海洋多元素循环
  • 批准号:
    2875388
  • 财政年份:
    2023
  • 资助金额:
    $ 72.57万
  • 项目类别:
    Studentship
Collaborative Research: Quantifying the thermal effects of fluid circulation in oceanic crust on temperatures in the southern Mexico subduction zone
合作研究:量化洋壳流体循环对墨西哥南部俯冲带温度的热效应
  • 批准号:
    2234705
  • 财政年份:
    2023
  • 资助金额:
    $ 72.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: Quantifying the thermal effects of fluid circulation in oceanic crust on temperatures in the southern Mexico subduction zone
合作研究:量化洋壳流体循环对墨西哥南部俯冲带温度的热效应
  • 批准号:
    2234706
  • 财政年份:
    2023
  • 资助金额:
    $ 72.57万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了