Propagation of hydro-geomorphic disturbances through continental-scale river basins: Future evolution of the Amazon River and its floodplain

水文地貌扰动通过大陆规模河流盆地的传播:亚马逊河及其洪泛区的未来演化

基本信息

  • 批准号:
    NE/T007478/1
  • 负责人:
  • 金额:
    $ 82.36万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Hundreds of millions of people live close to, and depend upon, the world's large rivers for water, food, transport and the maintenance of a thriving ecosystem. However, these rivers are increasingly vulnerable to the effects of a wide range of natural and human-induced disturbances, including climate change, construction of large dams, river engineering works, deforestation, agricultural intensification, and mining activity. Over the past 20 years, climate change and deforestation have impacted on the hydrology and sediment fluxes within the Amazon River Basin. However, the Amazon has remained one of the few large river systems that has been largely unaffected by dams. This situation is changing rapidly, because widespread hydropower dam construction in Brazil, Bolivia, Peru and Ecuador now threatens the basin, with >300 dams planned or under construction. These dams are expected to trigger severe hydro-physical and ecological disturbances throughout the basin, including massive reductions in sediment and nutrient delivery to the lowland Amazon and its floodplains, substantial degradation of river beds and banks, significant changes in river water levels and flooding, and adverse impacts on river and floodplain ecosystems, on which the human population depends. Recent high profile studies highlight the need for international action to assess and mitigate these impacts, both in the Amazon and elsewhere. However, our capacity to do this is severely restricted by an absence of quantitative models that can predict how environmental disturbances propagate through large rivers and floodplains, over continental distances, and decadal to centennial time periods. Critically, environmental disturbances driven by dams, climate and land cover change promote dynamic river responses (e.g., changes in river width, depth, slope, sediment size, degree of branching and rate of floodplain reworking), which in turn control changes in flood conveyance and downstream sediment delivery. Despite advances in modelling of river dynamics over short distances (<100 km), hydrological models that are applied to continental-scale drainage basins treat rivers and floodplains as static conduits. Consequently, such models are unable to represent or predict the future impacts of environmental change on flooding, sediment fluxes or river and floodplain functioning. This project will deliver a step-change in our ability to model, predict and understand how the world's large rivers are impacted by, and respond to, environmental change. We will achieve this by implementing a research strategy that involves six elements: First, we will develop a new multi-scale numerical modelling approach that enables the effects of river dynamics on environmental disturbance propagation through continental-scale drainage basins to be simulated. Second, we will develop a suite of environmental scenarios representing climate and land cover changes and dam construction throughout the Amazon Basin for the recent past (1985-2015) and future (up to 2200). Third, we will collect new field datasets at sites on the Amazon River that are required to test key components of the model. Fourth, we will work with an international team of project partners to assemble high-resolution field, satellite and model datasets that quantify channel and floodplain processes, and river morphology and dynamics throughout the Amazon Basin. Fifth, we will use these data to carry out rigorous testing of our new model. Sixth, we will apply the model to predict the future evolution of the Amazon River and its tributaries for a wide range of environmental change scenarios, and quantify the controls on hydro-geomorphic disturbance propagation within large drainage basins. We will work with our project partners to disseminate our model code, datasets and project outcomes to non-academic stakeholders, both nationally and internationally.
数以亿计的人生活在世界大河附近,并依赖这些大河获得水、食物、交通和维护繁荣的生态系统。然而,这些河流越来越容易受到各种自然和人为干扰的影响,包括气候变化、建造大型水坝、河流工程、砍伐森林、农业集约化和采矿活动。在过去的20年里,气候变化和森林砍伐对亚马逊河流域内的水文和泥沙通量产生了影响。然而,亚马逊河仍然是少数几个基本没有受到大坝影响的大型河流之一。这种情况正在迅速改变,因为巴西、玻利维亚、秘鲁和厄瓜多尔的大范围水电大坝建设现在威胁着该盆地,已规划或在建的大坝达300座。这些大坝预计将在整个流域引发严重的水文物理和生态扰动,包括向低地亚马逊及其泛滥平原输送的泥沙和营养物质大量减少,河床和河岸大幅退化,河流水位和洪水发生重大变化,以及对人类赖以生存的河流和泛滥平原生态系统产生不利影响。最近备受瞩目的研究突出表明,有必要采取国际行动,评估和减轻亚马逊和其他地方的这些影响。然而,我们这样做的能力受到严重限制,因为缺乏量化模型来预测环境干扰如何通过大河和泛滥平原、跨大陆距离以及十年到百年的时间周期传播。至关重要的是,由大坝、气候和土地覆盖变化引起的环境扰动促进了动态的河流反应(例如,河流宽度、深度、坡度、泥沙大小、分支程度和泛滥平原改造率的变化),这反过来又控制了洪水输送和下游泥沙输送的变化。尽管在短距离(100公里)河流动态建模方面取得了进展,但应用于大陆尺度流域的水文模型将河流和泛滥平原视为静态管道。因此,这些模型不能代表或预测未来环境变化对洪水、泥沙通量或河流和洪泛区功能的影响。这个项目将使我们在建模、预测和理解世界上的大河流如何受到环境变化的影响并对其做出反应的能力方面发生阶段性变化。我们将通过实施一项涉及六个要素的研究策略来实现这一目标:第一,我们将开发一种新的多尺度数值模拟方法,使之能够模拟河流动态对环境干扰通过大陆尺度流域传播的影响。其次,我们将开发一套环境情景,代表亚马逊盆地最近(1985-2015)和未来(至多2200)的气候和土地覆盖变化以及大坝建设。第三,我们将在亚马逊河上的站点收集新的现场数据集,这些数据集是测试该模型的关键组件所必需的。第四,我们将与一个由项目合作伙伴组成的国际团队合作,汇集高分辨率的现场、卫星和模型数据集,量化整个亚马逊盆地的河道和泛滥平原过程以及河流形态和动态。第五,我们将使用这些数据来对我们的新模型进行严格的测试。第六,我们将应用该模型在广泛的环境变化情景下预测亚马逊河及其支流的未来演变,并量化对大流域内水文地貌干扰传播的控制。我们将与我们的项目合作伙伴合作,向国内和国际的非学术利益攸关方传播我们的示范代码、数据集和项目成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Nicholas其他文献

Race and appointment availability influence continuity of care for chronic inflammatory skin disease: A cross-sectional study of United States practice data
种族和预约可用性影响慢性炎症性皮肤病的护理连续性:对美国实践数据的横断面研究
Optical evaluation of the Tiny Remote-sensing Instrument for Thermospheric Oxygen and Nitrogen (TRITON) CubeSat payload
小型热层氧氮遥感仪器 (TRITON) CubeSat 有效载荷的光学评估
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bruce Fritz;Kenneth Dymond;Charles Brown;Josh M. Wolf;T. Finne;V. M. Kooi;Andrew Nicholas;S. Budzien;Andrew W. Stephan;K. Wolfram
  • 通讯作者:
    K. Wolfram
Towards sustainable governance of freshwater sand – A resource regime approach
  • DOI:
    10.1016/j.esg.2024.100228
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tahmina Yasmin;Julian Clark;Greg Sambrook Smith;Afrah Daham;Andrew Nicholas;Andrea Gasparotto
  • 通讯作者:
    Andrea Gasparotto
Endocarditis identified by emergency department bedside ultrasound on a patient who presented with neurologic complaints
  • DOI:
    10.1016/j.visj.2024.101935
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Nicholas;Robyn Hoelle;Diana Mora Montero
  • 通讯作者:
    Diana Mora Montero

Andrew Nicholas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Nicholas', 18)}}的其他基金

THE EVOLUTION OF GLOBAL FLOOD HAZARD AND RISK [EVOFLOOD]
全球洪水灾害和风险的演变 [EVOFLOOD]
  • 批准号:
    NE/S015612/1
  • 财政年份:
    2021
  • 资助金额:
    $ 82.36万
  • 项目类别:
    Research Grant
Modelling how sediment suspension controls the morphology and evolution of sand-bed rivers
模拟沉积物悬浮如何控制沙床河流的形态和演化
  • 批准号:
    NE/L00738X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 82.36万
  • 项目类别:
    Research Grant
The sedimentology of fluvial megascours
河流特大冲刷沉积学
  • 批准号:
    NE/I023120/1
  • 财政年份:
    2012
  • 资助金额:
    $ 82.36万
  • 项目类别:
    Research Grant
Development of Winds Ion Neutrals Composition Suite (WINCS)
开发风离子中性成分套件 (WINCS)
  • 批准号:
    1142239
  • 财政年份:
    2011
  • 资助金额:
    $ 82.36万
  • 项目类别:
    Interagency Agreement
Morphodynamics and sedimentology of the tidally-influenced fluvial zone (TIFZ)
受潮汐影响的河流带(TIFZ)的形态动力学和沉积学
  • 批准号:
    NE/H006524/1
  • 财政年份:
    2010
  • 资助金额:
    $ 82.36万
  • 项目类别:
    Research Grant
Do floods matter? Bridging the gap between fluvial morphodynamics and alluvial architecture
洪水重要吗?
  • 批准号:
    NE/H009108/1
  • 财政年份:
    2010
  • 资助金额:
    $ 82.36万
  • 项目类别:
    Research Grant

相似国自然基金

土壤湿度初始化对WRF-Hydro模式陆面水文过程模拟的影响
  • 批准号:
    42075187
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
黄河上中游草地退化和退耕还林的区域气候水分效应
  • 批准号:
    41605085
  • 批准年份:
    2016
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于Ontario Hydro方法的贵州省人为源大气汞排放特征研究
  • 批准号:
    41365009
  • 批准年份:
    2013
  • 资助金额:
    55.0 万元
  • 项目类别:
    地区科学基金项目
贵州煤炭燃烧过程汞的稳定同位素分馏作用研究
  • 批准号:
    41003007
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of an entirely Lagrangian hydro-elastoviscoplastic FSI solver for design of resilient ocean/coastal structures
开发完全拉格朗日水弹粘塑性 FSI 求解器,用于弹性海洋/沿海结构的设计
  • 批准号:
    24K07680
  • 财政年份:
    2024
  • 资助金额:
    $ 82.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Droughts Beyond Hydro-climatological Extremes
超出水文气候极端值的干旱
  • 批准号:
    24K17352
  • 财政年份:
    2024
  • 资助金额:
    $ 82.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Micro-hydro power from redundant river weirs
利用多余的河堰进行微水力发电
  • 批准号:
    2862469
  • 财政年份:
    2023
  • 资助金额:
    $ 82.36万
  • 项目类别:
    Studentship
I-Corps: Geospatial Trend Detection for Hydro-power and Critical Infrastructure Design
I-Corps:水电和关键基础设施设计的地理空间趋势检测
  • 批准号:
    2344120
  • 财政年份:
    2023
  • 资助金额:
    $ 82.36万
  • 项目类别:
    Standard Grant
Identifying anthropogenic impacts on marine ecosystems through hydro-geo-biochemical linkages of submarine groundwater discharge
通过海底地下水排放的水文地球生化联系确定人为对海洋生态系统的影响
  • 批准号:
    23K13695
  • 财政年份:
    2023
  • 资助金额:
    $ 82.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Hydro-JULES-Next
Hydro-JULES-Next
  • 批准号:
    NE/X019063/1
  • 财政年份:
    2023
  • 资助金额:
    $ 82.36万
  • 项目类别:
    Research Grant
Reconstructing knowledge management: A radical modernisation of maintenance and capital expenditure risk modelling for a North Wales Hydro Power St
重建知识管理:北威尔士水电站维护和资本支出风险模型的彻底现代化
  • 批准号:
    2876942
  • 财政年份:
    2023
  • 资助金额:
    $ 82.36万
  • 项目类别:
    Studentship
Exploring co-occurring UK HYDRo-meteorological extremes that exAcerbate risk (HYDRA)
探索加剧风险的同时发生的英国水文气象极端事件 (HYDRA)
  • 批准号:
    NE/X009947/1
  • 财政年份:
    2023
  • 资助金额:
    $ 82.36万
  • 项目类别:
    Research Grant
Hydro-g: Monitoring Groundwater Resources using Low-Cost Microgravity Sensors
Hydro-g:使用低成本微重力传感器监测地下水资源
  • 批准号:
    NE/X011593/1
  • 财政年份:
    2023
  • 资助金额:
    $ 82.36万
  • 项目类别:
    Research Grant
Hydrogen-empowered Hydro-Electric Grids (HyHEG)
氢能水力电网 (HyHEG)
  • 批准号:
    10038564
  • 财政年份:
    2023
  • 资助金额:
    $ 82.36万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了