Short wavelength absorption by water vapour

水蒸气的短波长吸收

基本信息

  • 批准号:
    NE/T000767/1
  • 负责人:
  • 金额:
    $ 34.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

The two dominant radiative transport processes in our atmosphere are absorption of incoming sunlight, and the absorption of outgoing radiation in what is commonly called the greenhouse effect. Despite occurring at significantly different wavelengths, the rotation-vibration spectrum of water is both the dominant absorber of sunlight and the major greenhouse gas. Thus the rotation-vibration spectrum of water is, by some distance, the single most important spectrum for atmospheric processes. Accurate knowledge of water spectra is required for models of global radiative transport and the earth's energy budget and for more detailed studies such as retrievals of column densities and profiles of other species by remote sensing. The spectrum of water is of course very well studied but remains a challenge: it is very extended, complicated (with no regular structure at high resolution) and the intensities of individual atmospherically important transitions have a huge dynamic range. The demands of modern remote sensing satellites require water line intensities with high accuracy for both monitoring water columns and, because water absorption is so ubiquitous that its lines interferes other retrievals, for detection of a long list of trace species. Failure to model water absorptions accurately at best introduces a major source of error into retrievals and at worst can mean they fail altogether thus severely degrading the usefulness of remote observations. Many species, such as HONO, OClO, NO2, SO2, O3, BrO, HCHO, O4, IO and Glyoxal are monitored using their ultraviolet (UV) spectrum. It has become apparent from recent atmospheric studies that accurate representation of water absorption in the near UV is essential for their accurate retrieval. Retrieval of water columns is a major and important activity. Retrieval of water columns in the near UV has significant advantages since the Earth reflects sunlight in a much more uniform fashion at these wavelengths and the weaker absorption means that optical thickness effects which prevent the determination of reliable water columns in humid atmospheres are largely eliminated. However, precise retrievals rely on the availability of accurate laboratory data which are largely lacking. Satellites flying or planned such as NASA's first Earth Venture Instrument Class mission TEMPO (Tropospheric Emissions: Monitoring Pollution) mission, ESA's Sentinal series and Korea's GEMS (geostationary environmental monetaring satellite) mission will analyse the chemical composition of air with high spatial resolution at near UV wavelengths. All these missions will require high quality laboratory data for water over an extended wavelength range stretching into the near-UV. At present these data are simply not available: there are no direct, high-resolution laboratory or atmospheric measurements of water vapour spectra in the region, and atmospheric database such as HITRAN, contain no relevant information on it.The aim of this proposal is to provide comprehensive and accurate data on water absorption at short wavelengths. These data will be generated using techniques of first principle quantum mechanics that have been successfully applied to both absorption by water vapour at longer wavelengths and other key atmospheric species. Where possible the positions of absorption features will be adjusted using laboratory measurements. The resulting line lists will be made available to key groups involved monitoring the Earth's atmosphere in the near UV, placed in data depositories and made available to databases such as HITRAN.
大气中两个主要的辐射传输过程是吸收入射太阳光和吸收出射辐射,这就是通常所说的温室效应。尽管水的旋转振动光谱在波长上有很大的不同,但它既是太阳光的主要吸收者,也是主要的温室气体。因此,水的自转振动光谱在一定程度上是大气过程中最重要的光谱。全球辐射传输和地球能量收支的模型以及更详细的研究,例如通过遥感恢复柱密度和其他物种的轮廓,都需要准确的水光谱知识。当然,水的光谱得到了很好的研究,但仍然是一个挑战:它非常广泛、复杂(在高分辨率下没有规则的结构),而且对大气具有重要意义的各个跃迁的强度具有巨大的动态范围。现代遥感卫星的要求需要高精度的水线强度,以监测水柱,并由于水的吸收如此普遍,以至于其水线干扰其他检索,因此用于探测一长串痕量物种。在最好的情况下,未能准确地建立吸水量模型会给反演带来一个主要的误差来源,在最坏的情况下,可能意味着它们完全失败,从而严重降低远程观测的有效性。许多物种,如HONO、OClO、NO_2、SO_2、O_3、BrO、HCHO、O_4、IO和乙二醛都是用它们的紫外光谱监测的。从最近的大气研究中可以明显看出,准确地表示近紫外线中的水吸收对于准确地提取它们是必不可少的。找回水柱是一项重大而重要的活动。在近紫外线下恢复水柱具有显著的优势,因为地球在这些波长上以更均匀的方式反射阳光,而较弱的吸收意味着阻碍在潮湿大气中确定可靠水柱的光学厚度效应在很大程度上被消除了。然而,精确的检索依赖于准确的实验室数据,而这些数据在很大程度上是缺乏的。正在飞行或计划中的卫星,如美国国家航空航天局的首个地球冒险仪器类任务TEMPO(对流层排放:监测污染)任务、欧空局的哨兵系列任务和韩国的GEMS(地球静止环境货币化卫星)任务,将在近紫外线波段以高空间分辨率分析空气的化学成分。所有这些任务都将需要高质量的水实验室数据,其波长范围延伸至近紫外光。目前根本没有这些数据:该区域没有直接、高分辨率的实验室或大气测量水蒸气光谱,HITRAN等大气数据库也没有这方面的相关信息。这些数据将使用第一原理量子力学技术产生,这些技术已经成功地应用于较长波长的水蒸气和其他关键大气物种的吸收。在可能的情况下,将使用实验室测量来调整吸收特征的位置。所产生的线表将提供给在近紫外线中监测地球大气的主要小组,保存在数据储存库中,并提供给HITRAN等数据库。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Determination of quantum labels based on projections of the total angular momentum on the molecule-fixed axis
根据总角动量在分子固定轴上的投影确定量子标签
Calculated line lists for H216O and H218O with extensive comparisons to theoretical and experimental sources including the HITRAN2016 database
H216O 和 H218O 的计算谱线列表,与理论和实验来源(包括 HITRAN2016 数据库)进行广泛比较
Measurement and calculation of CO (7-0) overtone line intensities.
CO(7-0)泛音线强度的测量和计算。
Cross-sections for heavy atmospheres: H 2 O continuum
重气氛的横截面:H 2 O 连续体
Use of the complete basis set limit for computing highly accurate ab initio dipole moments
使用完整的基组极限来计算高精度的从头算偶极矩
  • DOI:
    10.48550/arxiv.2001.03678
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Conway E
  • 通讯作者:
    Conway E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Tennyson其他文献

The Spectrum of Hot Water: Rotational Transitions and Difference Bands in the (020), (100), and (001) Vibrational States
热水的光谱:(020)、(100) 和 (001) 振动状态下的旋转跃迁和差异带
Calculation of rotation-vibration energy levels of the ammonia molecule based on an <em>ab initio</em> potential energy surface
  • DOI:
    10.1016/j.jms.2016.08.003
  • 发表时间:
    2016-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Oleg L. Polyansky;Roman I. Ovsyannikov;Aleksandra A. Kyuberis;Lorenzo Lodi;Jonathan Tennyson;Andrey Yachmenev;Sergei N. Yurchenko;Nikolai F. Zobov
  • 通讯作者:
    Nikolai F. Zobov
The infrared absorption spectrum of radioactive water isotopologue Hsub2/subsup15/supO
放射性水同位素体H₂¹⁵O的红外吸收光谱
  • DOI:
    10.1016/j.saa.2024.124007
  • 发表时间:
    2024-04-15
  • 期刊:
  • 影响因子:
    4.600
  • 作者:
    Boris A. Voronin;Jonathan Tennyson;Sergey N. Yurchenko;Tatyana Yu. Chesnokova;Aleksei V. Chentsov;Aleksandr D. Bykov;Maria V. Makarova;Svetlana S. Voronina;Flávio C. Cruz
  • 通讯作者:
    Flávio C. Cruz
Estimate of the <em>J</em>′<em>J</em>″ dependence of water vapor line broadening parameters
  • DOI:
    10.1016/j.jqsrt.2010.05.015
  • 发表时间:
    2010-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Boris A. Voronin;Nina N. Lavrentieva;Tatyana P. Mishina;Tatyana Yu. Chesnokova;Matthew J. Barber;Jonathan Tennyson
  • 通讯作者:
    Jonathan Tennyson
The use of supercomputers for the variational calculation of ro-vibrationally excited states of floppy molecules
  • DOI:
    10.1007/bf00529031
  • 发表时间:
    1987-11-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Brian T. Sutcliffe;Jonathan Tennyson;Steven Miller
  • 通讯作者:
    Steven Miller

Jonathan Tennyson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Tennyson', 18)}}的其他基金

Radiative transport modeling in technological plasmas and combustion
技术等离子体和燃烧中的辐射传输建模
  • 批准号:
    ST/W000504/1
  • 财政年份:
    2021
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Research Grant
UK Atomic, Molecular and Optical physics R-matrix consortium (UK AMOR)
英国原子、分子和光学物理 R 矩阵联盟 (UK AMOR)
  • 批准号:
    EP/R029342/1
  • 财政年份:
    2018
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Research Grant
Integrated software for electron-molecule collisions
电子-分子碰撞集成软件
  • 批准号:
    ST/R005133/1
  • 财政年份:
    2018
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Fellowship
High accuracy transition intensities for ozone
臭氧的高精度转变强度
  • 批准号:
    NE/N001508/1
  • 财政年份:
    2015
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Research Grant
Atomic and Molecular Data Services for Astrophysics
天体物理学原子和分子数据服务
  • 批准号:
    ST/M007774/1
  • 财政年份:
    2014
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Research Grant
High accuracy line intensities for carbon dioxide
二氧化碳的高精度线强度
  • 批准号:
    NE/J010316/1
  • 财政年份:
    2012
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Research Grant
A calculated methane line list for characterizing exoplanets and brown dwarfs
用于表征系外行星和褐矮星的计算甲烷线列表
  • 批准号:
    ST/I001050/1
  • 财政年份:
    2011
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Research Grant
Pathfinder: Using simulations to reduce industrial costs and the environmental consequences of plasma etching
探路者:利用模拟降低等离子蚀刻的工业成本和环境后果
  • 批准号:
    NE/H014039/1
  • 财政年份:
    2009
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Research Grant
UK R-matrix Atomic and Molecular Physics HPC Code Development Project (UK-RAMP)
英国 R 矩阵原子和分子物理 HPC 代码开发项目 (UK-RAMP)
  • 批准号:
    EP/G055556/1
  • 财政年份:
    2009
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Research Grant
Doctoral Training Grant (DTG) to provide funding for 1 PhD studentship
博士培训补助金 (DTG) 为 1 名博士生提供资助
  • 批准号:
    NE/H527491/1
  • 财政年份:
    2009
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Training Grant

相似海外基金

Construction of "Fusion Color Material" Combining Structural Colors and Specific Wavelength Absorption
结构色与特定波长吸收相结合的“融合色材料”的构建
  • 批准号:
    23KJ0014
  • 财政年份:
    2023
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Leveraging ultra-fast Cherenkov emission in scintillator-based TOF-PET by exploiting photon wavelength classification
通过利用光子波长分类,在基于闪烁体的 TOF-PET 中利用超快切伦科夫发射
  • 批准号:
    10659114
  • 财政年份:
    2022
  • 资助金额:
    $ 34.78万
  • 项目类别:
Relaxation of intramolecular vibrations of solvents by infrared excitation and elucidation of effective infrared absorption wavelength band for drying solvent
红外激发溶剂分子内振动的弛豫及干燥溶剂有效红外吸收波段的阐明
  • 批准号:
    22H01407
  • 财政年份:
    2022
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Design, synthesis and application of long wavelength fluorophores for bioimaging
生物成像长波长荧光团的设计、合成及应用
  • 批准号:
    10437616
  • 财政年份:
    2021
  • 资助金额:
    $ 34.78万
  • 项目类别:
Discrete Wavelength Frequency Domain Near Infrared Spectroscopy for Non-Invasive Measurement of Cytochrome Oxidation State
离散波长频域近红外光谱法用于细胞色素氧化态的非侵入性测量
  • 批准号:
    10272895
  • 财政年份:
    2021
  • 资助金额:
    $ 34.78万
  • 项目类别:
Real-time observation of photocatalytic reaction at solid-liquid interface by using wavelength-dispersive soft X-ray absorption spectroscopy
利用波长色散软X射线吸收光谱实时观察固液界面光催化反应
  • 批准号:
    20K22475
  • 财政年份:
    2020
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of wavelength-dispersive depth-resolved X-ray absorption spectroscopy and real-time observation of reactions in perpendicular direction of films
波长色散深度分辨X射线吸收光谱的发展及薄膜垂直方向反应的实时观察
  • 批准号:
    19K22091
  • 财政年份:
    2019
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Wearable Breath Sensors with Chip Integrated Mid-Infrared Slow Light Enhanced Absorbance Spectroscopy on Conformal Flexible Substrates
共形柔性基板上具有芯片集成中红外慢光增强吸收光谱的可穿戴呼吸传感器
  • 批准号:
    9394236
  • 财政年份:
    2017
  • 资助金额:
    $ 34.78万
  • 项目类别:
Study on new phoshor materials for luminescence in long wavelength and absorption in broad region
长波长发光、宽范围吸收的新型荧光粉材料研究
  • 批准号:
    16K06719
  • 财政年份:
    2016
  • 资助金额:
    $ 34.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Wavefront sensor for deep imaging of the brain
用于大脑深度成像的波前传感器
  • 批准号:
    9136863
  • 财政年份:
    2015
  • 资助金额:
    $ 34.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了