Autonomous Techniques for anthropogenic Structure Ecological Assessment (AT-SEA)

人为结构生态评估自主技术(AT-SEA)

基本信息

  • 批准号:
    NE/T010649/1
  • 负责人:
  • 金额:
    $ 61.26万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Thousands of Oil & Gas industry structures in the sea are approaching the end of their lives. At this time, they typically need to be removed and the environment returned to a safe state. This process is known as decommissioning. As many of these sites are old (typically 20+ years) and originally were drilled before the current environmental regulations existed, there has often been some contamination of the seabed around these sites. To ensure that no harmful effects will occur, decommissioning operations need to be supported by an environmental assessment and subsequent monitoring. Monitoring may be required over many years after decommissioning, especially if some structures are left in place. Monitoring surveys in the offshore environment are expensive and time-consuming, requiring ships and many specialist seagoing personnel. This requirement, although vital, will have a considerable cost for industry and the public.Ocean robots, which use computer systems to carry out survey missions by themselves, are regularly used in detailed scientific assessments of the environment. As they collect very high-quality data quickly, such robots have recently been adopted for some tasks by industry but these still require an expensive support ship as they are not capable of long-range missions. Recent technological developments have cut the cost and expanded the range of these robots to thousands of kilometres, making it possible for long-range assessments of multiple sites to be undertaken with a robot launched from the shore. This would have many advantages, improving the quality and quantity of environmental information while cutting the costly requirement for a survey ship and crew. We will carry out the first fully autonomous environmental assessment of multiple decommissioning sites. The Autosub long-range ocean robot submarine ("Boaty McBoatface") will be launched from the shore in Shetland, visit and carry out an environmental assessment at three decommissioning sites in the northern North Sea, before returning around 10 days later with the detailed survey information onboard. The robot will take photographs of the seabed, and these will be automatically stitched together to make a map of the seafloor, structures present, and the animals that live there. Established sensor systems will measure a range of properties of the water, including the presence of oil and gas. As well as the decommissioned sites, the robot will visit a special marine protected area where we know there are natural leaks of gas, to check the robot can reliably detect a leak if it did occur.On return to shore, the project will examine all the data obtained and compare it to that gathered using standard survey ship methods. We will test if the same environmental trends can be identified from both datasets to determine if the automated approach would be a suitable replacement for standard survey ship operations. The project will also produce a fully documented case study, which includes detailed information on the costs and benefits, practical information on deployments and approaches to reduce the risks and improve the efficiency of operations. This will be used by industry, scientists and government regulators, to demonstrate the techniques and will provide the necessary information to potential users to aid in their adoption. The overall goal of the project is to improve the environmental protection of the North Sea at a reduced cost and to demonstrate how this leading UK robotic technology could be used worldwide.
海洋中数以千计的石油和天然气工业结构正在接近其生命的尽头。此时,通常需要将其删除,并将环境恢复到安全状态。这个过程被称为退役。由于这些地点中有许多是老的(通常超过20年),并且最初是在现行环境法规存在之前钻探的,因此这些地点周围的海底经常受到一些污染。为确保不产生有害影响,需要通过环境评估和随后的监测来支持退役作业。可能需要在退役后的许多年内进行监测,特别是如果一些结构留在原地。在近海环境中进行监测调查既昂贵又耗时,需要船只和许多专业航海人员。这一要求虽然至关重要,但将给工业和公众带来相当大的费用,海洋机器人利用计算机系统自行执行调查任务,经常用于对环境进行详细的科学评估。由于它们能够快速收集高质量的数据,这些机器人最近已被工业界用于某些任务,但这些任务仍然需要昂贵的支援船,因为它们无法执行远程任务。最近的技术发展降低了成本,并将这些机器人的航程扩大到数千公里,使从海岸发射的机器人能够对多个地点进行远程评估。这将有许多好处,提高环境信息的质量和数量,同时减少对调查船和船员的昂贵要求。我们将对多个退役地点进行首次完全自主的环境评估。Autosub远程海洋机器人潜艇(“Boaty McBoatface”)将从设得兰群岛的海岸发射,访问北海北方的三个退役地点并进行环境评估,然后在大约10天后返回,船上有详细的调查信息。机器人将拍摄海底的照片,这些照片将自动拼接在一起,制作海底地图,存在的结构和生活在那里的动物。已建立的传感器系统将测量水的一系列特性,包括石油和天然气的存在。除了退役的地点,机器人还将访问一个特殊的海洋保护区,我们知道那里有天然气泄漏,以检查机器人是否能够可靠地检测到泄漏,如果确实发生了。返回海岸后,该项目将检查获得的所有数据,并将其与使用标准测量船方法收集的数据进行比较。我们将测试是否可以从两个数据集中识别出相同的环境趋势,以确定自动化方法是否适合替代标准测量船操作。该项目还将编写一份有充分记录的案例研究,其中包括关于成本和效益的详细资料、关于部署的实用资料以及减少风险和提高业务效率的办法。工业界、科学家和政府监管机构将利用这些信息来演示这些技术,并向潜在用户提供必要的信息,以帮助他们采用这些技术。该项目的总体目标是以更低的成本改善北海的环境保护,并展示英国领先的机器人技术如何在全球范围内使用。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visualizing Multi-Hectare Seafloor Habitats with BioCam
使用 BioCam 可视化数公顷的海底栖息地
  • DOI:
    10.5670/oceanog.2021.supplement.02-34
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Thornton B
  • 通讯作者:
    Thornton B
Insights from the management of offshore energy resources: Toward an ecosystem-services based management approach for deep-ocean industries
近海能源管理的见解:针对深海产业建立基于生态系统服务的管理方法
  • DOI:
    10.3389/fmars.2022.994632
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Bravo M
  • 通讯作者:
    Bravo M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Jones其他文献

Evolving Management of Zenker’s Diverticulum in the Endoscopic Era: A North American Experience
内窥镜时代 Zenker 憩室的不断发展的管理:北美经验
  • DOI:
    10.1007/s00268-016-3442-0
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Daniel Jones;A. Aloraini;S. Gowing;J. Cools;M. Leimanis;R. Tabah;L. Ferri
  • 通讯作者:
    L. Ferri
Making a Fascist Family: Spearhead and the Attempt to Build a Nationalist Community Through Magazine Print Culture
打造法西斯家庭:通过杂志印刷文化建立民族主义社区的先锋和尝试
Lysophospholipid (S1P) receptors (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database
IUPHAR/BPS 药理学指南数据库中的溶血磷脂 (S1P) 受体(版本 2020.5)
  • DOI:
    10.2218/gtopdb/f135/2020.5
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    V. Blaho;J. Chun;Daniel Jones;Deepa Jonnalagadda;Y. Kihara;Valerie Tan
  • 通讯作者:
    Valerie Tan
Special and structured matrices in max-plus algebra
最大加代数中的特殊和结构化矩阵
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Jones
  • 通讯作者:
    Daniel Jones
Surface As Structure: The Multi-Touch Controller As Map Of Musical State Space
表面作为结构:多点触控控制器作为音乐状态空间的地图
  • DOI:
    10.5281/zenodo.850157
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Bown;Daniel Jones;Sam Britton
  • 通讯作者:
    Sam Britton

Daniel Jones的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Jones', 18)}}的其他基金

Conference: Rocky Mountain Geobiology Symposium 2024
会议:2024 年落基山地球生物学研讨会
  • 批准号:
    2417156
  • 财政年份:
    2024
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Standard Grant
The Gulf Stream control of the North Atlantic carbon sink
湾流对北大西洋碳汇的控制
  • 批准号:
    NE/W009579/1
  • 财政年份:
    2023
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Research Grant
CAREER: Do microbes form caves? Sulfide oxidation and limestone corrosion in sulfuric acid caves
职业:微生物会形成洞穴吗?
  • 批准号:
    2239710
  • 财政年份:
    2023
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Continuing Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Inoculation vs. education: the role of real time alerts and end-user overconfidence
EAGER:DCL:SaTC:实现跨学科协作:接种与教育:实时警报和最终用户过度自信的作用
  • 批准号:
    2210198
  • 财政年份:
    2022
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Comparative genomics of the capitulum: deciphering the molecular basis of a key floral innovation
合作研究:RESEARCH-PGR:头状花序的比较基因组学:破译关键花卉创新的分子基础
  • 批准号:
    2214474
  • 财政年份:
    2022
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Standard Grant
Seabed Mining And Resilience To EXperimental impact
海底采矿和实验影响的恢复能力
  • 批准号:
    NE/T003537/1
  • 财政年份:
    2021
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Research Grant
Advaenced state estimats of the ocean and cryosphere: innovative new tools to better understand, predict, and prepare for sea level changes
海洋和冰冻圈的先进状态估计:更好地理解、预测和准备海平面变化的创新工具
  • 批准号:
    MR/T020822/1
  • 财政年份:
    2020
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Fellowship
NSF Postdoctoral Fellowship in Biology FY 2019: Deciphering CLE Peptide Signaling Pathways in Sunflower (Helianthus annuus)
2019 财年 NSF 生物学博士后奖学金:破译向日葵(Helianthus annuus)中的 CLE 肽信号通路
  • 批准号:
    1906389
  • 财政年份:
    2019
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Fellowship Award
EVIST/HST Individual Awards
EVIST/HST 个人奖
  • 批准号:
    8516282
  • 财政年份:
    1985
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Interagency Agreement
American Chemists and the Geneva Protocol
美国化学家和日内瓦议定书
  • 批准号:
    7614312
  • 财政年份:
    1976
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Standard Grant

相似国自然基金

EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金

相似海外基金

Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
  • 批准号:
    2340042
  • 财政年份:
    2024
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Continuing Grant
Creating a reflective, assessment workbook for University teachers to enhance teaching techniques and improve student engagement, by incorporating International Baccalaureate (IB) teaching practices
通过纳入国际文凭 (IB) 教学实践,为大学教师创建反思性评估工作簿,以提高教学技巧并提高学生参与度
  • 批准号:
    24K06129
  • 财政年份:
    2024
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
  • 批准号:
    24K20733
  • 财政年份:
    2024
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of new molecular self-temperature sensing techniques using luminescence-absorption hybrid thermometry
利用发光-吸收混合测温法开发新型分子自温度传感技术
  • 批准号:
    24K17691
  • 财政年份:
    2024
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel techniques of percutaneous sonography-guided surgical operations (SonoSurgery
经皮超声引导外科手术新技术(SonoSurgery
  • 批准号:
    10087309
  • 财政年份:
    2024
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Collaborative R&D
ConSenT: Connected Sensing Techniques: Cooperative Radar Networks Using Joint Radar and Communication Waveforms
ConSenT:互联传感技术:使用联合雷达和通信波形的协作雷达网络
  • 批准号:
    EP/Y035933/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Fellowship
ERI: SDR Beyond Radio: Enabling Experimental Research in Multi-Node Optical Wireless Networks via Software Defined Radio Tools and Techniques
ERI:超越无线电的 SDR:通过软件定义无线电工具和技术实现多节点光无线网络的实验研究
  • 批准号:
    2347514
  • 财政年份:
    2024
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Standard Grant
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
  • 批准号:
    2348490
  • 财政年份:
    2024
  • 资助金额:
    $ 61.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了