Resolving the fate and studying the impact of pharmaceutical wastes on the environment and local community of a pharmaceutical manufacturing hub

解决药品制造中心药品废物的命运并研究其对环境和当地社区的影响

基本信息

  • 批准号:
    NE/T013230/1
  • 负责人:
  • 金额:
    $ 107.34万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

In order to treat current bacterial infections worldwide a large quantity of pharmaceutically active ingredients (APIs) are manufactured globally each day. This process started in the UK in the 1940s and 50s following the invention of chemical purification of penicillin during World War II. Clearly a great deal of development, innovation and improved efficacy in the range of APIs has occurred since then. One of the major issues has been the time it takes to develop a new drug, the cost of all the tests needed for testing the efficacy and toxicity of any new drug against existing compounds. If this is too long and expensive no new drugs will get developed as patent life time is limited to around 20 years. Much of this time is taken up with clinical trials so once a drug is off-patent it is worth less and must be produced where employment and other costs are low. This provides a dilemma for those in need of antimicrobial agents as much of the production has moved to lower and middle income countries where costs are lower but this comes as the expense of reduced care about waste management to cut production costs. This now has been the trend during the last twenty-five years with small and medium sized pharmaceutical plants being built in Central America (principally Puerto Rico), Eastern Europe (Croatia), India and China. Out of all these India has emerged as the fastest growing, most successful pharmaceutical producer in the world. Unhappily the cost has been environmental pollution arising from small scale manufacturing developing in industrialised areas already badly polluted. However, there is a recent trend for major pharmaceutical hubs to maximise efficiency and establish suitable, local supplies of resources. Such hubs are newly emerging and there is still time to monitor their impact and most importantly regulate their activities to stop waste antibiotics entering both aquatic and terrestrial habitats and spreading resistant bacteria and damaging human health. We have assembled scientists in India and the UK to work on this globally important issue and study one such pharmaceutical hub and test in real time how pollution impacts both the human community and the resistant status of bacteria around them. In the long term we all have the same goal: to produce drugs efficiently, cleanly and with responsibility for the careful disposal of APIs without pollution. The academic teams will work together to develop chemical, microbial and public health technologies to produce a framework to evaluate impact. In turn these methods and approaches, when supported by appropriately analysed data and models, will establish in theory the best way to mitigate environmental impacts without making production economically non-viable. Antibiotic production is a vitally important industry and deserves to be served by state-of-the-art science to help solve the modern-day global needs of medicine with the market demand for cheap drugs. This dilemma can be addressed by medical anthropology combined with analytical technology and this is precisely what we will do in our team of experts doing battle with the problems of "cheap drugs for bad bugs". We could equally quote "cheap drugs for bad health" as it is the local communities and workforce who are most exposed to enable consumers globally to benefit. This means that we must produce coherent evidence that current practices are impacting human and environmental health and this is not a trivial task but is well served by establishing multidisciplinary teams of international academic experts. Our aims are clear and this is our focus for our India-UK ResPharm team to resolve the dilemmas discussed in producing cheap antimicrobials.
为了治疗目前全球范围内的细菌感染,全球每天都在生产大量的药用活性成分(API)。这一过程始于20世纪40年代和50年代的英国,第二次世界大战期间发明了青霉素的化学提纯。显然,自那以来,在原料药范围内进行了大量的开发、创新和提高了药效。其中一个主要问题是开发一种新药所需的时间,以及测试任何新药对现有化合物的有效性和毒性所需的所有测试的成本。如果这太长太贵,就不会有新药被开发出来,因为专利寿命被限制在20年左右。大部分时间都花在了临床试验上,所以一旦一种药物的专利失效,它的价值就会降低,必须在就业和其他成本较低的地方生产。这给那些需要抗菌剂的人带来了两难境地,因为大部分生产已转移到成本较低的中低收入国家,但这是减少对废物管理的关注以降低生产成本的代价。这是过去25年来的趋势,在中美洲(主要是波多黎各)、东欧(克罗地亚)、印度和中国正在建设中小型制药厂。在所有这些因素中,印度已经成为世界上增长最快、最成功的制药国。不幸的是,代价是在已经严重污染的工业化地区发展小规模制造业造成的环境污染。然而,最近有一种趋势是,主要的制药中心将效率最大化,并建立适当的本地资源供应。这类中心是新出现的,仍有时间监测它们的影响,最重要的是规范它们的活动,以阻止废弃的抗生素进入水生和陆地栖息地,传播抗药性细菌并损害人类健康。我们召集了印度和英国的科学家来研究这个具有全球重要性的问题,并研究了一个这样的制药中心,并实时测试污染如何影响人类社区及其周围细菌的抗药性状态。从长远来看,我们都有一个共同的目标:高效、清洁地生产毒品,并负责小心处置无污染的原料药。学术团队将共同开发化学、微生物和公共卫生技术,以产生一个评估影响的框架。反过来,当得到适当分析的数据和模型的支持时,这些方法和途径将在理论上确立在不使生产在经济上不可行的情况下减轻环境影响的最佳方式。抗生素生产是一个极其重要的行业,理应得到最先进的科学技术的服务,以帮助解决当今全球对药品的需求和市场对廉价药品的需求。这一困境可以通过医学人类学和分析技术相结合来解决,这正是我们将在我们的专家团队中所做的事情,该团队正在与“为坏细菌提供廉价药物”的问题作斗争。我们同样可以引用“治疗不良健康的廉价药物”,因为让全球消费者受益的是当地社区和劳动力。这意味着我们必须提供一致的证据,证明目前的做法正在影响人类和环境健康,这不是一项微不足道的任务,但通过建立由国际学术专家组成的多学科小组可以很好地发挥作用。我们的目标是明确的,这是我们的印度-英国ResPharm团队的重点,以解决在生产廉价抗菌剂方面讨论的困境。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genetic characterisation of a large antibiotic resistant environmental ST131 E. coli plasmid using a long read hybrid assembly approach
使用长读长混合组装方法对大型抗生素抗性环境 ST131 大肠杆菌质粒进行遗传表征
  • DOI:
    10.1101/2020.06.16.155663
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James R
  • 通讯作者:
    James R
Impact of trimethoprim on the river microbiome and antimicrobial resistance
  • DOI:
    10.1101/2020.06.05.133348
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Delaney;S. Raguideau;J. Holden;L. Zhang;H. Tipper;G.L. Hill;U. Klümper;T. Zhang;C. Cha;K. Lee;R. James;E. Travis;M. Bowes;P. Hawkey;H. Lindstrom;C. Tang;W. Gaze;A. Mead;C. Quince;A. Singer;E. Wellington
  • 通讯作者:
    J. Delaney;S. Raguideau;J. Holden;L. Zhang;H. Tipper;G.L. Hill;U. Klümper;T. Zhang;C. Cha;K. Lee;R. James;E. Travis;M. Bowes;P. Hawkey;H. Lindstrom;C. Tang;W. Gaze;A. Mead;C. Quince;A. Singer;E. Wellington
Population-level impacts of antibiotic usage on the human gut microbiome.
  • DOI:
    10.1038/s41467-023-36633-7
  • 发表时间:
    2023-03-02
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Lee, Kihyun;Raguideau, Sebastien;Siren, Kimmo;Asnicar, Francesco;Cumbo, Fabio;Hildebrand, Falk;Segata, Nicola;Cha, Chang-Jun;Quince, Christopher
  • 通讯作者:
    Quince, Christopher
Microbial hitchhikers harbouring antimicrobial-resistance genes in the riverine plastisphere.
  • DOI:
    10.1186/s40168-023-01662-3
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
    15.5
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lijiang Song其他文献

Acoustic feature processing strategy for leak degree identification in non-metallic pipelines
用于非金属管道泄漏程度识别的声学特征处理策略
  • DOI:
    10.1016/j.apacoust.2025.110820
  • 发表时间:
    2025-09-05
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Yuebo Yu;Xiwang Cui;Yan Gao;Xiaojuan Han;Lijiang Song;Fangcheng Lu
  • 通讯作者:
    Fangcheng Lu
Watasemycin biosynthesis in Streptomyces venezuelae: thiazoline C-methylation by a type B radical-SAM methylase homologue† †Electronic supplementary information (ESI) available: Experimental procedures and additional tables, figures, chromatograms and results from biological assays. See DOI: 10.1039
委内瑞拉链霉菌中的瓦酶霉素生物合成:B 型自由基 SAM 甲基化酶同系物导致噻唑啉 C 甲基化† †提供电子补充信息 (ESI):实验程序和其他表格、图表、色谱图和生物测定结果,请参见 DOI:10.1039。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Yuki Inahashi;Shanshan Zhou;M. Bibb;Lijiang Song;Mahmoud M. Al;M. Bibb;G. Challis
  • 通讯作者:
    G. Challis
Evidence of Plasmodium falciparum piperaquine resistance in western Cambodia : dihydroartemisinin-piperaquine open-label multicenter clinical assessment Running title : Piperaquine resistance in western Cambodia
柬埔寨西部恶性疟原虫哌喹耐药性的证据:双氢青蒿素-哌喹开放标签多中心临床评估运行标题:柬埔寨西部哌喹耐药性
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Leang;W. Taylor;D. M. Bouth;Lijiang Song;J. Tarning;Mengchuor Char;Saorin Kim;B. Witkowski;V. Duru;Nimol Khim;D. Ménard;P. Ringwald
  • 通讯作者:
    P. Ringwald
Genome-guided exploration of streptomyces ambofaciens secondary metabolism
基因组引导的安博链霉菌次生代谢探索
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Aigle;R. Bunet;C. Corre;A. Garénaux;Laurence Hôtel;Sheng Huang;Luisa Laureti;S. Lautru;V. Mendes;Š. Nezbedová;H. Nguyen;Lijiang Song;G. Challis;P. Leblond;J. Pernodet
  • 通讯作者:
    J. Pernodet
Pentamycin biosynthesis in Philippine Streptomyces sp. S816: Cytochrome P450-catalysed installation of the C-14 hydroxyl group
菲律宾链霉菌中戊霉素的生物合成。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shanshan Zhou;Lijiang Song;J. Masschelein;F. A. Sumang;Irene A. Papa;T. Zulaybar;Aileen B. Custodio;Daniel Zabala;E. Alcantara;E. L. C. de los Santos;G. Challis
  • 通讯作者:
    G. Challis

Lijiang Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lijiang Song', 18)}}的其他基金

A high sensitivity triple quadruple mass spectrometer coupled to an ultra-high pressure liquid chromatograph system for quantitative analysis
高灵敏度三重四极杆质谱仪与超高压液相色谱系统联用进行定量分析
  • 批准号:
    BB/R000689/1
  • 财政年份:
    2017
  • 资助金额:
    $ 107.34万
  • 项目类别:
    Research Grant

相似国自然基金

增强子在小鼠早期胚胎细胞命运决定中的功能和调控机制研究
  • 批准号:
    82371668
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
线粒体功能对涡虫干细胞命运决定调控机制的研究
  • 批准号:
    32000498
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
黑腹果蝇Pipsqueak基因家族dan/danr调控神经干细胞时龄特征的机制解析
  • 批准号:
    32000506
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
H3K9甲基化酶SETDB1调控ERVs对小鼠早期胚胎发育及干细胞命运决定机制研究
  • 批准号:
    32000503
  • 批准年份:
    2020
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
唾液酸化修饰通过介导蛋白质与染色质结合调控细胞命运
  • 批准号:
    31900519
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
AJUBA通过磷酸化STAT5促进间充质干细胞向成骨分化命运决定的机制研究
  • 批准号:
    31970679
  • 批准年份:
    2019
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
转录因子介导的心室肌细胞定向分化研究
  • 批准号:
    31970680
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Mnt对果蝇神经干细胞行为和命运决定调控机制的研究
  • 批准号:
    31970675
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
TBX3蛋白通过TGF-β/Wnt信号促进乳腺癌细胞EMT与侵袭的机理研究
  • 批准号:
    31871378
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
前列腺素调控肝星状细胞积聚于肝损伤灶的机理
  • 批准号:
    31871379
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
  • 批准号:
    DP240102315
  • 财政年份:
    2024
  • 资助金额:
    $ 107.34万
  • 项目类别:
    Discovery Projects
METABOLISM: accelerator Mass SpEctrometry to quanTify nanoplastics and decipher their fAte and Behavior in envirOnmentaL and bIological SysteMs
代谢:加速器质谱法可量化纳米塑料并破译其在环境和生物系统中的命运和行为
  • 批准号:
    EP/Y002733/1
  • 财政年份:
    2024
  • 资助金额:
    $ 107.34万
  • 项目类别:
    Research Grant
CAREER: Mechanisms Underlying Temporal Integration of BMP Signaling in Cell Fate Decisions
职业:细胞命运决定中 BMP 信号时间整合的潜在机制
  • 批准号:
    2340659
  • 财政年份:
    2024
  • 资助金额:
    $ 107.34万
  • 项目类别:
    Continuing Grant
Fate of ocean oxygenation in a warming world
变暖世界中海洋氧化的命运
  • 批准号:
    MR/Y011740/1
  • 财政年份:
    2024
  • 资助金额:
    $ 107.34万
  • 项目类别:
    Fellowship
High-Resolution Cell Fate Mapping in 3D Tissue through Whole-Mount In Situ Sequencing
通过整体原位测序在 3D 组织中进行高分辨率细胞命运图谱
  • 批准号:
    24K09471
  • 财政年份:
    2024
  • 资助金额:
    $ 107.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Impacts of the migratory dendritic cells on tumor-specific T cell fate in the thymus
迁移树突状细胞对胸腺中肿瘤特异性 T 细胞命运的影响
  • 批准号:
    24K18461
  • 财政年份:
    2024
  • 资助金额:
    $ 107.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Enhancing global prediction of PFAS pollutant fate in sediment
加强对沉积物中 PFAS 污染物归宿的全球预测
  • 批准号:
    NE/Y003152/1
  • 财政年份:
    2024
  • 资助金额:
    $ 107.34万
  • 项目类别:
    Research Grant
Mapping the integration of T cell fate control across time and space
绘制 T 细胞命运控制跨时间和空间的整合图
  • 批准号:
    DP240101851
  • 财政年份:
    2024
  • 资助金额:
    $ 107.34万
  • 项目类别:
    Discovery Projects
C2H2 EAGER: Gadolinium Contamination in the Middle Rio Grande Valley: Understanding Environmental Fate and Human Exposure
C2H2 EAGER:里约格兰德河谷中部的钆污染:了解环境命运和人类暴露
  • 批准号:
    2422236
  • 财政年份:
    2024
  • 资助金额:
    $ 107.34万
  • 项目类别:
    Standard Grant
Impact of redox condition on emerging contaminants fate
氧化还原条件对新兴污染物命运的影响
  • 批准号:
    DP240101865
  • 财政年份:
    2024
  • 资助金额:
    $ 107.34万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了