The past, present and future of snow algae in Antarctica: a threatened terrestrial ecosystem?

南极洲雪藻的过去、现在和未来:陆地生态系统受到威胁吗?

基本信息

  • 批准号:
    NE/V000764/1
  • 负责人:
  • 金额:
    $ 74.33万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

In Antarctica, less than 0.2% of the land is ice-free for at least part of the year and so is able to support terrestrial life. As in all habitats, these ecosystems have as their basis the primary producers - that is organisms that photosynthesise by using the sun's energy to capture CO2 from the atmosphere and make sugars. Even so, in the Antarctic Peninsula, only 1.34% of this exposed ground is estimated to be vegetated.Satellite images can be used to determine vegetated areas on the ground because photosynthetic organisms have distinct colours that can be detected. Perhaps surprisingly, when some of these areas have been inspected directly - in a process called ground-validation - a major group of photosynthetic organisms are snow-algae living on the surface of (or just below) the snow fields. Many species have dormant stages where they make red pigments - this has led to them being mistaken for drops of blood in the snow. As well as the fact that snow algae may be one of the major primary producers, they are also important for cycling nutrients in the habitable terrestrial regions of Antarctica. As the snow melts they are washed off into the surrounding environments providing nutrients to the adjacent land and into the sea. The contribution of snow algae to these ecosystems, both in absolute terms and relative to the area of 'true' terrestrial habitat in the Antarctic, is therefore likely to be considerable. Recently, we have carried out studies to make the first-ever large-scale area and biomass distribution map of snow algae across the whole of the Antarctic Peninsula. Essentially we have been able to record for the first time the third largest terrestrial photosynthetic ecosystem on the Antarctic Peninsula after mosses and lichens. We detected 1679 green snow algae blooms covering approximately 1.9km2, which overall was estimated to weigh 1327 tonnes and taking up 1757 tonnes of CO2 per year. We found that these blooms were influenced by both temperature and nutrients with 60% of blooms being within 5km of a penguin colony. We also found that 62% of blooms were on small, low-lying islands that, should the Peninsula continue to warm, will lose their summer snow cover along with their snow algae. However, the other larger blooms were found further north on the Peninsula, on sites that would allow the blooms to expand onto higher ground.Now we have the initial estimates of where and how much snow algae there is in one part of Antarctica it is important that we work out 1: where snow algae are in the rest of Antarctica 2, increase the detection sensitivity of our methods by using drones to detect the red as well as green blooms 3, the range of temperatures, nutrients and light required for the snow algae to bloom 4, how the snow algae compare to other major plants in the region such as lichens and mosses and 5, whether the snow algae species across Antarctica are all the same and what are they made of. We will also look at historical satellite images of Antarctica to see if the blooms are spreading, decreasing or have remained in the same places. To do this we need to carry out a comprehensive survey of snow algae blooms from detected sites all the way along the Antarctic Peninsula in 2021 and then studying one very large bloom for a whole growth season in 2022. There we will ground-truth the blooms and other vegetation and to carry out a detailed analysis of the nutrients in the snow and the photosynthetic activity of the snow algae and other plants in the area. This will allow us to estimate their overall contribution to the polar carbon budget. Once we have all this information we can make detailed models to predict how the snow algae blooms will change in location, size, biomass and species in the coming years. Overall, this will be a significant advance in our understanding of the Antarctic terrestrial ecosystem.
在南极洲,只有不到0.2%的土地在一年中至少有一部分时间是无冰的,因此能够支持陆地生命。与所有栖息地一样,这些生态系统的基础是初级生产者--即利用太阳能进行光合作用以从大气中捕获二氧化碳并制造糖的生物。即便如此,在南极半岛,只有1.34%的裸露地面估计是植被。卫星图像可以用来确定地面上的植被面积,因为光合生物有明显的颜色,可以检测到。也许令人惊讶的是,当这些地区中的一些地区被直接检查时-在一个称为地面验证的过程中-一个主要的光合生物群是生活在雪地表面(或下面)的雪藻。许多物种都有休眠阶段,在那里它们制造红色色素-这导致它们被误认为是雪中的血滴。除了雪藻可能是主要的初级生产者之一,它们对南极洲可居住陆地区域的营养循环也很重要。当雪融化时,它们被冲到周围的环境中,为邻近的土地和海洋提供营养。因此,雪藻对这些生态系统的贡献,无论是在绝对值还是相对于南极“真正”陆地栖息地的面积,都可能是相当大的。最近,我们进行了研究,以制作有史以来第一个大比例尺的面积和生物量分布图的雪藻在整个南极半岛。从本质上讲,我们首次能够记录南极半岛继苔藓和地衣之后第三大陆地光合生态系统。我们检测到1679个绿色雪藻水华,覆盖面积约1.9平方公里,估计总重量为1327吨,每年吸收1757吨二氧化碳。我们发现,这些花朵受到温度和营养物质的影响,60%的花朵在企鹅殖民地5公里范围内。我们还发现,62%的水华发生在地势低洼的小岛上,如果半岛继续变暖,这些岛屿将失去夏季的积雪覆盖沿着的雪藻。然而,其他较大的水华是在半岛更北的地方发现的,在那些地方,水华可以扩展到更高的地方。现在我们对南极洲的一个地区的雪藻的位置和数量有了初步的估计,重要的是我们要计算出1:在南极洲的其他地方有雪藻2,通过使用无人机检测红色和绿色水华3来提高我们方法的检测灵敏度,雪藻开花所需的温度、营养和光照范围4,雪藻与该地区其他主要植物如地衣和苔藓的比较情况5,南极洲的雪藻物种是否都一样,它们是由什么组成的。我们还将查看南极洲的历史卫星图像,看看水华是否正在蔓延、减少或保持在同一个地方。要做到这一点,我们需要在2021年对南极半岛沿线沿着检测到的雪藻水华进行全面调查,然后在2022年研究整个生长季节的一次非常大的水华。在那里,我们将实地考察花朵和其他植被,并对雪中的营养物质以及雪藻和该地区其他植物的光合作用活动进行详细分析。这将使我们能够估计它们对极地碳预算的总体贡献。一旦我们有了所有这些信息,我们就可以建立详细的模型来预测未来几年雪藻水华在位置、大小、生物量和物种方面的变化。总的来说,这将是我们对南极陆地生态系统了解的一个重大进展。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Remote Sensing Phenology of Antarctic Green and Red Snow Algae Using WorldView Satellites.
  • DOI:
    10.3389/fpls.2021.671981
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Gray A;Krolikowski M;Fretwell P;Convey P;Peck LS;Mendelova M;Smith AG;Davey MP
  • 通讯作者:
    Davey MP
Space-based Earth Observations for climate security. COP26 Universities Network Briefing.
气候安全的天基地球观测。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bamber, J.
  • 通讯作者:
    Bamber, J.
A research agenda for nonvascular photoautotrophs under climate change.
  • DOI:
    10.1111/nph.18631
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Porada;M. Bader;Monica B. Berdugo;C. Colesie;C. Ellis;P. Giordani;U. Herzschuh;Y. Ma;S. Launi
  • 通讯作者:
    P. Porada;M. Bader;Monica B. Berdugo;C. Colesie;C. Ellis;P. Giordani;U. Herzschuh;Y. Ma;S. Launi
Why Space? The opportunity for Health and Life Science Innovation: Microalgae biotechnology for space applications.
为什么是太空?
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Davey MP
  • 通讯作者:
    Davey MP
High Resilience and Fast Acclimation Processes Allow the Antarctic Moss Bryum argenteum to Increase Its Carbon Gain in Warmer Growing Conditions.
  • DOI:
    10.3390/biology11121773
  • 发表时间:
    2022-12-06
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Gemal, Emma L.;Green, T. G. Allan;Cary, S. Craig;Colesie, Claudia
  • 通讯作者:
    Colesie, Claudia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Davey其他文献

Optimal Management of Asymptomatic Carotid Artery Stenosis: A Systematic Review and Network Meta-Analysis
无症状颈动脉狭窄的优化管理:系统评价和网络荟萃分析
  • DOI:
    10.1016/j.ejvs.2023.01.020
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    6.800
  • 作者:
    Sara A. Gasior;John P.M. O’Donnell;Matthew Davey;James Clarke;Amirhossein Jalali;Éanna Ryan;Thomas M. Aherne;Stewart R. Walsh
  • 通讯作者:
    Stewart R. Walsh

Matthew Davey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
  • 批准号:
    2323649
  • 财政年份:
    2024
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
  • 批准号:
    2323648
  • 财政年份:
    2024
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
INT-ACT: Intangible Cultural Heritage, Bridging The Past, Present And Future
INT-ACT:非物质文化遗产,连接过去、现在和未来
  • 批准号:
    10102226
  • 财政年份:
    2024
  • 资助金额:
    $ 74.33万
  • 项目类别:
    EU-Funded
Dryland agriculture and Land use; past, present and future resilience [AGRI-DRY]
旱地农业和土地利用;
  • 批准号:
    EP/Y03290X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Research Grant
Into the Grey: Grey Zone Warfare in Past, Present, and Future
走进灰色:过去、现在和未来的灰色地带战争
  • 批准号:
    AH/W01128X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Research Grant
Rural Health and Care: Past, Present and Future
农村卫生与保健:过去、现在和未来
  • 批准号:
    AH/X012298/1
  • 财政年份:
    2023
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Research Grant
Collaborative Research: The Past, Present, and Future of Boreal Fire Feedbacks
合作研究:北方火灾反馈的过去、现在和未来
  • 批准号:
    2215118
  • 财政年份:
    2023
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
2023 Forsyth Symposium: The Oral Microbiome: Past, Present, and Future
2023 年福赛斯研讨会:口腔微生物组:过去、现在和未来
  • 批准号:
    10753824
  • 财政年份:
    2023
  • 资助金额:
    $ 74.33万
  • 项目类别:
The School Meals Service: Past, Present - And Future?
学校供餐服务:过去、现在和未来?
  • 批准号:
    ES/X000737/1
  • 财政年份:
    2023
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Research Grant
Pursuing the past-present dynamics and future predictions of alpine ecosystems, by making full use of "comprehensive knowledge" that fuses humanities and sciences
充分利用人文与科学融合的“综合知识”,追寻高山生态系统的过去现在动态和未来预测
  • 批准号:
    23K17467
  • 财政年份:
    2023
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了