Space Weather Instrumentation, Measurement, Modelling and Risk: Ionosphere (SWIMMR-I)
空间天气仪器、测量、建模和风险:电离层 (SWIMMR-I)
基本信息
- 批准号:NE/V002643/1
- 负责人:
- 金额:$ 144.3万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Space weather has a variety of effects on the ionosphere which is the charged component of the Earth's upper atmosphere lying between 80 and 1000 km. Depending on the processes involved, space weather causes the density of the ionosphere to be enhanced, depleted, or sometimes structured into both enhancements and depletions. Understanding and forecasting these effects is of great importance, because a variety of radio applications and sectors are affected by the ionosphere. For example, the military and civil aviation sectors use both high frequency (HF) signals, at frequencies between 3 and 30 MHz, and global navigation satellite (GNSS) signals, between ~1200 and 1600 MHz, for navigation. Both are sufficiently affected by the ionospheric medium that it has determined the system design and is a major day-to-day operational issue.Our programme seeks to secure a step-change in the Met Office's (and more broadly the UK's) ability to specify and forecast the ionosphere. To achieve our objectives, we will leverage background IP from previous NERC, EPSRC and Dstl grants and contracts and explore new techniques. In the case of the leveraged IP we expect that all models will be at TRL 6 by the grant end and new research will be on a best efforts basis. We will achieve our objectives by benefitting from a five-institution consortium of some of the country's principal experts and, to maximise interchange of ideas, we will enhance the consortium by opening our technical meetings to other members of the wider UK and international community. The majority of the programme will focus on environmental models, but while doing this we will maintain an awareness of the applications for these models, in particular aviation. Lying at the heart of the SWIMMR-I delivery is the University of Birmingham's Advanced Ensemble electron density Assimilation System (AENeAS). This model is a coupled ionosphere-thermosphere physics-based data assimilation model and is based on a state-of-the-art variant of the ensemble Kalman filter. We believe that AENeAS is the only operationally-ready data assimilation model which has a fully physics-based underlying background model (ionosphere and thermosphere). As part of this programme AENeAS will be both operationalised and improved through a number of enhancements to its underlying data assimilation and boundary conditions using the Whole Atmosphere Community Climate Model (WACCM). The improved AeNeAS model will provide global maps of TEC and electron density, and in combination with developments of the University of Lancaster's D-region model, ODRAM, and developments of the University of Leicester's ray tracing expertise, will provide HF products to the aviation industry. While these activities will enhance the UK's ability to model and forecast ionospheric enhancements and depletions, they will not directly address some of the major problems that GNSS systems have to face. These are due to gradients in the ionosphere and time dependent amplitude and phase variations on the signal, known as scintillation. Both effects will be addressed by a joint team from the Universities of Birmingham and Bath. The University of Bath will focus on a data driven approach appropriate to regions where there are many GNSS ionospheric receivers and the University of Birmingham will focus on two higher risk approaches. In one, the University of Birmingham will use satellite radio occultation measurements to localise and quantify scintillation, and in the other use AENeAS to make probabilistic predictions of when and where strong uplift of the equatorial plasma occurs, a predictor of equatorial scintillation. Both of these approaches are suitable for operation over poorly instrumented areas and consequently the potential benefits are high, but there are significant associated research challenges.
空间天气对电离层有各种影响,电离层是地球上层大气的带电成分,位于80至1000公里之间。根据所涉及的过程,空间天气会导致电离层密度增加或耗尽,或有时结构为增强和耗尽。了解和预测这些影响非常重要,因为各种无线电应用和部门都受到电离层的影响。例如,军事和民用航空部门使用频率在3至30兆赫之间的高频(HF)信号和在~1200至1600兆赫之间的全球导航卫星(GNSS)信号进行导航。两者都受到电离层介质的充分影响,以至于它已经决定了系统设计,并且是一个主要的日常操作问题。我们的计划寻求确保气象局(更广泛地说,英国)指定和预测电离层的能力发生阶段性变化。为了实现我们的目标,我们将利用以前NERC、EPSRC和DSTL赠款和合同的背景知识产权,并探索新技术。在杠杆知识产权的情况下,我们预计所有模型将在赠款结束时达到TRL 6,并将尽最大努力进行新的研究。我们将通过受益于由英国一些主要专家组成的五家机构联盟来实现我们的目标,为了最大限度地进行思想交流,我们将通过向更广泛的英国和国际社会其他成员开放我们的技术会议来加强该联盟。该计划的大部分将侧重于环境模型,但在这样做的同时,我们将保持对这些模型的应用的认识,特别是航空。位于SWIMMR-I发射中心的是伯明翰大学的高级集合电子密度同化系统(Aeneas)。该模式是一个以电离层-热层物理为基础的耦合数据同化模式,以集合卡尔曼滤波的最新变体为基础。我们认为,埃涅阿斯是唯一具有完全以物理为基础的基本背景模式(电离层和热层)的可操作的数据同化模式。作为这一方案的一部分,埃涅阿斯将通过使用全大气社区气候模式(WACCM)对其基本数据同化和边界条件进行若干改进而运作和改进。改进的埃涅阿斯模型将提供TEC和电子密度的全球地图,并与兰开斯特大学的D区模型、ODRAM的开发和莱斯特大学的射线跟踪专业知识的开发相结合,将为航空业提供高频产品。虽然这些活动将加强联合王国模拟和预测电离层增强和损耗的能力,但它们不会直接解决全球导航卫星系统必须面对的一些主要问题。这是由于电离层中的梯度以及信号上随时间变化的幅度和相位,即所谓的闪烁。伯明翰大学和巴斯大学的一个联合团队将研究这两种影响。巴斯大学将侧重于适用于有许多全球导航卫星系统电离层接收器的区域的数据驱动方法,伯明翰大学将侧重于两种风险较高的方法。在一项研究中,伯明翰大学将使用卫星无线电掩星测量来定位和量化闪烁,而在另一项研究中,伯明翰大学将利用埃涅阿斯对赤道等离子体发生强烈抬升的时间和地点进行概率预测,这是赤道闪烁的预报器。这两种方法都适合在仪器设备较差的地区进行操作,因此潜在的好处很高,但也存在重大的相关研究挑战。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
One-Dimensional Variational Ionospheric Retrieval Using Radio Occultation Bending Angles: 1. Theory
使用无线电掩星弯曲角的一维变分电离层反演:1.理论
- DOI:10.1029/2023sw003572
- 发表时间:2024
- 期刊:
- 影响因子:3.7
- 作者:Culverwell I
- 通讯作者:Culverwell I
Multi-Model Ensembles for Upper Atmosphere Models
高层大气模型的多模型系综
- DOI:10.22541/essoar.167214417.77104049/v1
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Elvidge S
- 通讯作者:Elvidge S
Estimating the occurrence of geomagnetic activity using the Hilbert-Huang transform and extreme value theory
使用希尔伯特-黄变换和极值理论估计地磁活动的发生
- DOI:10.1002/essoar.10502744.1
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Elvidge S
- 通讯作者:Elvidge S
One-Dimensional Variational Ionospheric Retrieval Using Radio Occultation Bending Angles: 2. Validation
使用无线电掩星弯曲角的一维变分电离层反演:2. 验证
- DOI:10.1029/2023sw003571
- 发表时间:2024
- 期刊:
- 影响因子:3.7
- 作者:Elvidge S
- 通讯作者:Elvidge S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Elvidge其他文献
Using WACCM-X neutral densities for orbital propagation: Challenges and solutions
使用 WACCM-X 中性密度进行轨道传播:挑战和解决方案
- DOI:
10.1016/j.jsse.2024.04.012 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Matthew K. Brown;Sean Elvidge - 通讯作者:
Sean Elvidge
Sean Elvidge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean Elvidge', 18)}}的其他基金
DRivers and Impacts of Ionospheric Variability with EISCAT-3D (DRIIVE)
EISCAT-3D (DRIIVE) 的驱动器和电离层变率的影响
- 批准号:
NE/W003368/1 - 财政年份:2022
- 资助金额:
$ 144.3万 - 项目类别:
Research Grant
Space Weather Instrumentation, Measurement, Modelling and Risk: Thermosphere (SWIMMR-T)
空间天气仪器、测量、建模和风险:热层 (SWIMMR-T)
- 批准号:
NE/V002708/1 - 财政年份:2020
- 资助金额:
$ 144.3万 - 项目类别:
Research Grant
相似海外基金
Space Weather Instrumentation, Measurement, Modelling and Risk: Thermosphere (SWIMMR-T)
空间天气仪器、测量、建模和风险:热层 (SWIMMR-T)
- 批准号:
NE/V002570/1 - 财政年份:2020
- 资助金额:
$ 144.3万 - 项目类别:
Research Grant
Space Weather Instrumentation, Measurement, Modelling and Risk: Ionosphere (SWIMMR-I)
空间天气仪器、测量、建模和风险:电离层 (SWIMMR-I)
- 批准号:
NE/V002791/1 - 财政年份:2020
- 资助金额:
$ 144.3万 - 项目类别:
Research Grant
Space Weather Instrumentation, Measurement, Modelling and Risk: Ionosphere (SWIMMR-I)
空间天气仪器、测量、建模和风险:电离层 (SWIMMR-I)
- 批准号:
NE/V002597/1 - 财政年份:2020
- 资助金额:
$ 144.3万 - 项目类别:
Research Grant
Space Weather Instrumentation, Measurement, Modelling and Risk: Thermosphere (SWIMMR-T)
空间天气仪器、测量、建模和风险:热层 (SWIMMR-T)
- 批准号:
NE/V002708/1 - 财政年份:2020
- 资助金额:
$ 144.3万 - 项目类别:
Research Grant
Space Weather Instrumentation, Measurement, Modelling and Risk: Ionosphere (SWIMMR-I)
空间天气仪器、测量、建模和风险:电离层 (SWIMMR-I)
- 批准号:
NE/V002678/1 - 财政年份:2020
- 资助金额:
$ 144.3万 - 项目类别:
Research Grant
Space Weather Instrumentation, Measurement, Modelling and Risk: Ionosphere (SWIMMR-I)
空间天气仪器、测量、建模和风险:电离层 (SWIMMR-I)
- 批准号:
NE/V002686/1 - 财政年份:2020
- 资助金额:
$ 144.3万 - 项目类别:
Research Grant
Space Weather Instrumentation, Measurement, Modelling and Risk: Thermosphere (SWIMMR-T)
空间天气仪器、测量、建模和风险:热层 (SWIMMR-T)
- 批准号:
NE/V002732/1 - 财政年份:2020
- 资助金额:
$ 144.3万 - 项目类别:
Research Grant
Space Weather Instrumentation, Measurement, Modelling and Risk: Thermosphere (SWIMMR-T)
空间天气仪器、测量、建模和风险:热层 (SWIMMR-T)
- 批准号:
NE/V00283X/1 - 财政年份:2020
- 资助金额:
$ 144.3万 - 项目类别:
Research Grant
Collaborative Instrumentation: COCONet (Continuously Operating Caribbean GPS Observational Network) An Infrastructure Proposal for a Multi-hazard Tectonic and Weather Observatory
协作仪器:COCONet(持续运行的加勒比 GPS 观测网络)多灾害构造和天气观测站的基础设施提案
- 批准号:
1042909 - 财政年份:2010
- 资助金额:
$ 144.3万 - 项目类别:
Continuing Grant
Collaborative Instrumentation: COCONet (Continuously Operating Caribbean GPS Observational Network) An Infrastructure Proposal for a Multi-hazard Tectonic and Weather Observatory
协作仪器:COCONet(持续运行的加勒比 GPS 观测网络)多灾害构造和天气观测站的基础设施提案
- 批准号:
1042906 - 财政年份:2010
- 资助金额:
$ 144.3万 - 项目类别:
Continuing Grant