High-resolution genomics to reveal changes in microbial biodiversity across space and time in the warming Arctic Ocean

高分辨率基因组学揭示北冰洋变暖中微生物生物多样性随空间和时间的变化

基本信息

  • 批准号:
    NE/W005654/1
  • 负责人:
  • 金额:
    $ 60.1万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The Arctic is the most impacted ecosystem on Earth by global warming. Thus, it serves as a bellwether for the consequences of global change and therefore the persistence of biodiversity on our planet. Yet, due to logistical challenges to access, the Arctic and especially the central Arctic Ocean, remains one of the most poorly understood biomes on Earth. Moreover, as the environmental change in the Arctic is accelerating, it has become the main focus of geopolitical interests because the Arctic is not only regulating global climate but is used for extracting biological and geological resources. Thus, the Arctic provides significant ecosystem services on biodiversity that is largely unknown, particularly for the most inaccessible geographic areas such as the central Arctic Ocean. Understanding how the largest of all aquatic ecosystems in the Arctic changes is therefore crucial for different key disciplines of the 21st century including climate research, conservation, and sustainable economic development. Aquatic microbes in sea ice and seawater play pivotal roles in climate feedbacks and in sustaining food webs (marine primary production), which are central for conservation and ecosystem services. Microbes also serve as biological indicators due to their fast adaptive response following environmental change. Although genomic approaches have provided transformative insights into responses of microbial communities to environmental change, their application is limited in polar ecosystems and especially the central Arctic Ocean mainly due to issues of access and the extreme nature of this ecosystem. To overcome these challenges, a Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) has been conducted in 2020. MOSAiC is the largest polar expedition in history including over 20 countries with more than 400 researchers, studying a drifting surface habitat while it crosses the central Arctic Ocean via the transpolar drift current. Hence, the ice-breaker RV 'Polarstern' spent a year drifting across the central Arctic Ocean and locked up into the sea ice. This expedition, therefore, enabled for the first time to sample the same surface-ocean habitat (mainly sea ice and co-drifting water directly underneath) while it was carried across the Arctic Ocean by the transpolar drift current. Thus, the MOSAiC drift expedition has created a time series of samples reflecting the seasonal cycle of environmental changes in a drifting surface ocean habitat (e.g. a sea-ice floe from its formation to thaw), which is unprecedented but will help to reveal how the environmental change in the Arctic Ocean impacts the Arctic climate system. This new NERC project is not only built on the unique time-series data and samples, it capitalizes on a subsequent microbial genomics project funded by the DOE Joint Genome Institute (JGI, USA). The latter is providing sequence data including their basic analyses (e.g. assembly, annotations) of microbial metagenomes and metatranscriptomes for over 400 time-series samples from the drifting sea-ice floe. Bespoke bioinformatics and community ecology analyses will be applied to those sequence data for revealing how habitat-specific genomic diversity of ocean microbes and their microbiomes is changing throughout time (complete seasonal cycle) and in relation to changing habitat characteristics (e.g. formation of sea ice in autumn and thaw in spring and summer). Thus, this project will provide a baseline for assessing how microbes as a biological bellwether respond to the changing Arctic Ocean, which is essential for making predictions about how warming in the Arctic impacts ecosystem services underpinned by microbes such as sustaining the marine food web and driving the carbon cycle in the Arctic Ocean.
北极是地球上受全球变暖影响最严重的生态系统。因此,它是全球变化后果的领头羊,因此也是我们星球上生物多样性持久性的领头羊。然而,由于进入的后勤挑战,北极,特别是北冰洋中部,仍然是地球上最不了解的生物群落之一。此外,随着北极环境变化的加速,它已成为地缘政治利益的主要焦点,因为北极不仅调节全球气候,而且用于提取生物和地质资源。因此,北极为生物多样性提供了重要的生态系统服务,但这在很大程度上是未知的,特别是对于北冰洋中部等最难以到达的地理区域。因此,了解北极最大的水生生态系统如何变化对于21世纪的不同关键学科至关重要,包括气候研究,保护和可持续经济发展。海冰和海水中的水生微生物在气候反馈和维持食物网(海洋初级生产)方面发挥着关键作用,而食物网是保护和生态系统服务的核心。微生物也可作为生物指示剂,因为它们在环境变化后具有快速的适应性反应。虽然基因组方法为微生物群落对环境变化的反应提供了变革性的见解,但其应用在极地生态系统中受到限制,特别是北冰洋中部,主要是由于该生态系统的极端性质和访问问题。为了克服这些挑战,2020年进行了北极气候研究多学科漂移观测站(MOSAiC)。MOSAiC是历史上最大的极地探险队,包括20多个国家的400多名研究人员,研究漂流的表面栖息地,同时通过跨极地漂流流穿越北冰洋中部。因此,破冰船RV“Polarstern”花了一年的时间漂过北冰洋中部,并被锁在海冰中。因此,这次考察首次在跨极漂流流携带其穿越北冰洋的同时,对同一表层海洋栖息地(主要是海冰和正下方的共同漂流水)进行了采样。因此,MOSAiC漂移考察创建了一个时间序列的样本,反映了漂移的表层海洋生境(例如,海冰从形成到融化)环境变化的季节性周期,这是前所未有的,但将有助于揭示北冰洋的环境变化如何影响北极气候系统。这个新的NERC项目不仅建立在独特的时间序列数据和样本上,它还利用了由美国能源部联合基因组研究所(JGI,美国)资助的后续微生物基因组学项目。后者正在提供序列数据,包括其对来自漂流海冰的400多个时间序列样本的微生物宏基因组和元转录组的基本分析(例如组装、注释)。定制的生物信息学和群落生态学分析将应用于这些序列数据,以揭示海洋微生物及其微生物组的生境特异性基因组多样性如何随时间变化(完整的季节周期)以及与生境特征变化(例如秋季海冰形成和春季和夏季解冻)的关系。因此,该项目将为评估微生物作为生物学领头羊如何应对不断变化的北冰洋提供一个基线,这对于预测北极变暖如何影响由微生物支撑的生态系统服务至关重要,例如维持海洋食物网和推动北冰洋的碳循环。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Mock其他文献

Metagenome-assembled-genomes recovered from the Arctic drift expedition MOSAiC
从北极漂移探险 MOSAiC 中恢复的宏基因组组装基因组
  • DOI:
    10.1038/s41597-025-04525-8
  • 发表时间:
    2025-02-04
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    William Boulton;Asaf Salamov;Igor V. Grigoriev;Sara Calhoun;Kurt LaButti;Robert Riley;Kerrie Barry;Allison A. Fong;Clara J. M. Hoppe;Katja Metfies;Kersten Oetjen;Sarah Lena Eggers;Oliver Müller;Jessie Gardner;Mats A. Granskog;Anders Torstensson;Marc Oggier;Aud Larsen;Gunnar Bratbak;Andrew Toseland;Richard M. Leggett;Vincent Moulton;Thomas Mock
  • 通讯作者:
    Thomas Mock
More realistic plankton simulation models will improve projections of ocean ecosystem responses to global change
更现实的浮游生物模拟模型将改进对海洋生态系统对全球变化响应的预测。
  • DOI:
    10.1038/s41559-025-02788-3
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    14.500
  • 作者:
    Kevin J. Flynn;Angus Atkinson;John Beardall;John A. Berges;Maarten Boersma;Christophe Brunet;Albert Calbet;Dave A. Caron;Hans G. Dam;Patricia M. Glibert;Per Juel Hansen;Peng Jin;Christian Lønborg;Daniel J. Mayor;Susanne Menden-Deuer;Thomas Mock;Margaret R. Mulholland;David M. Needham;Luca Polimene;Alex J. Poulton;Carol Robinson;Sebastian D. Rokitta;Björn Rost;Enric Saiz;David J. Scanlan;Katrin Schmidt;Evelyn Sherr;Diane K. Stoecker;Camilla Svensen;Stefan Thiele;Tron F. Thingstad;Selina Våge
  • 通讯作者:
    Selina Våge
Characterizing organisms from three domains of life with universal primers from throughout the global ocean
使用来自全球海洋的通用引物对生命的三个域中的生物进行表征
  • DOI:
    10.1038/s41597-025-05423-9
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Jesse McNichol;Nathan L. R. Williams;Yubin Raut;Craig Carlson;Elisa R. Halewood;Kendra Turk-Kubo;Jonathan P. Zehr;Andrew P. Rees;Glen Tarran;Mary R. Gradoville;Matthias Wietz;Christina Bienhold;Katja Metfies;Sinhué Torres-Valdés;Thomas Mock;Sarah Lena Eggers;Wade Jeffrey;Joseph Moss;Paul Berube;Steven Biller;Levente Bodrossy;Jodie Van De Kamp;Mark Brown;Swan L. S. Sow;E. Virginia Armbrust;Jed Fuhrman
  • 通讯作者:
    Jed Fuhrman
A novel tri-unsaturated highly branched isoprenoid (HBI) alkene from the marine diatom <em>Navicula salinicola</em>
  • DOI:
    10.1016/j.orggeochem.2020.104050
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Simin Gao;Lukas Smik;Maxim Kulikovskiy;Nataliya Shkurina;Evgeniy Gusev;Nikolai Pedentchouk;Thomas Mock;Simon T. Belt
  • 通讯作者:
    Simon T. Belt
Eine Unterscheidung kommunikations- und medienwissenschaftlicher Grundverständnisse eines zentralen Begriffs
通信和媒体科学基本概念
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Mock
  • 通讯作者:
    Thomas Mock

Thomas Mock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Mock', 18)}}的其他基金

Limits to Evolutionary Adaptation of Phytoplankton in the Arctic Ocean
北冰洋浮游植物进化适应的限制
  • 批准号:
    NE/R000883/1
  • 财政年份:
    2018
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Research Grant
Rapid Growth Algae: An enabling technology to enhance algal growth and reduce algal production costs
快速生长藻类:一种促进藻类生长并降低藻类生产成本的技术
  • 批准号:
    NE/M005755/1
  • 财政年份:
    2014
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Research Grant
From the North Sea to the Arctic Ocean: The impact of temperature on eukaryotic phytoplankton
从北海到北冰洋:温度对真核浮游植物的影响
  • 批准号:
    NE/K004530/1
  • 财政年份:
    2013
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Research Grant
Global significance of light-driven proton pumps in eukaryotic marine phytoplankton
光驱动质子泵在真核海洋浮游植物中的全球意义
  • 批准号:
    NE/K013734/1
  • 财政年份:
    2013
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Research Grant
How diatom blooms are being formed: Identifying the genetic underpinnings of fast growth.
硅藻华是如何形成的:确定快速生长的遗传基础。
  • 批准号:
    NE/J013730/1
  • 财政年份:
    2012
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Research Grant
Functional adaptation of diatoms to environmental conditions in sea ice of the Southern Ocean
硅藻对南大洋海冰环境条件的功能适应
  • 批准号:
    NE/I001751/1
  • 财政年份:
    2010
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Research Grant

相似国自然基金

联合基因组重测序和10× Genomics scRNA-Seq解析乌骨鸡胸肌黑色素转运的分子机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Journal of Genetics and Genomics
  • 批准号:
    31224803
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
病理性瘢痕的相关基因及siRNA干扰机制的研究
  • 批准号:
    30471790
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目
蛋鸡与肉鸡骨骼肌生长发育差异的分子遗传学基础
  • 批准号:
    30330430
  • 批准年份:
    2003
  • 资助金额:
    130.0 万元
  • 项目类别:
    重点项目

相似海外基金

Identifying strategies to reveal genetic results over the lifespan
确定揭示一生中遗传结果的策略
  • 批准号:
    10739918
  • 财政年份:
    2023
  • 资助金额:
    $ 60.1万
  • 项目类别:
IntBIO COLLABORATIVE RESEARCH: Integrating fossils, genomics, and machine learning to reveal drivers of Cretaceous innovations in flowering plants
IntBIO 协作研究:整合化石、基因组学和机器学习,揭示白垩纪开花植物创新的驱动因素
  • 批准号:
    2217116
  • 财政年份:
    2022
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Standard Grant
IntBIO COLLABORATIVE RESEARCH: Integrating fossils, genomics, and machine learning to reveal drivers of Cretaceous innovations in flowering plants
IntBIO 协作研究:整合化石、基因组学和机器学习,揭示白垩纪开花植物创新的驱动因素
  • 批准号:
    2217117
  • 财政年份:
    2022
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Standard Grant
Modeling patient mutations in iPSC-derived neurons to reveal cellular mechanisms of schizophrenia
对 iPSC 衍生神经元中的患者突变进行建模以揭示精神分裂症的细胞机制
  • 批准号:
    10369266
  • 财政年份:
    2021
  • 资助金额:
    $ 60.1万
  • 项目类别:
Modeling patient mutations in iPSC-derived neurons to reveal cellular mechanisms of schizophrenia
对 iPSC 衍生神经元中的患者突变进行建模以揭示精神分裂症的细胞机制
  • 批准号:
    10681311
  • 财政年份:
    2021
  • 资助金额:
    $ 60.1万
  • 项目类别:
Dual Genome Omics: Adapting Genomics Techniques to Reveal Molecular Pathology in Mitochondrial Disease
双基因组组学:采用基因组学技术揭示线粒体疾病的分子病理学
  • 批准号:
    10214794
  • 财政年份:
    2021
  • 资助金额:
    $ 60.1万
  • 项目类别:
Dual Genome Omics: Adapting Genomics Techniques to Reveal Molecular Pathology in Mitochondrial Disease
双基因组组学:采用基因组学技术揭示线粒体疾病的分子病理学
  • 批准号:
    10396078
  • 财政年份:
    2021
  • 资助金额:
    $ 60.1万
  • 项目类别:
Dual Genome Omics: Adapting Genomics Techniques to Reveal Molecular Pathology in Mitochondrial Disease
双基因组组学:采用基因组学技术揭示线粒体疾病的分子病理学
  • 批准号:
    10611386
  • 财政年份:
    2021
  • 资助金额:
    $ 60.1万
  • 项目类别:
Quantifying gene expression and network regulation in single cells to reveal the consequences of stress on the immune response
量化单细胞中的基因表达和网络调控,揭示压力对免疫反应的影响
  • 批准号:
    10408168
  • 财政年份:
    2020
  • 资助金额:
    $ 60.1万
  • 项目类别:
Using Legionella-amoeba co-evolution to reveal new modes of immunity and pathogenesis
利用军团菌-阿米巴共同进化揭示新的免疫模式和发病机制
  • 批准号:
    10166988
  • 财政年份:
    2020
  • 资助金额:
    $ 60.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了