The explosivity of volcanic eruptions: Quantifying the critical role of permeability in magmas

火山喷发的爆炸性:量化岩浆渗透性的关键作用

基本信息

  • 批准号:
    NE/W008033/1
  • 负责人:
  • 金额:
    $ 91.91万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Volcanic eruptions are one of the most powerful and spectacular natural phenomena and even relatively small eruptions can have major social, environmental and economic impacts, on a global scale. Around 9% of the world's population are directly affected by volcanic eruptions and so it is a primary goal of volcanology to be able to forecast the style of volcanic eruptions so that vulnerable communities can be safely evacuated. Yet, in times of volcanic unrest, we still cannot say with any certainty what type of eruption will occur and therefore how hazardous it might be.As magma rises inside the volcano, fluids that are dissolved in the magma begin to form bubbles. Eruption explosivity is principally controlled by the ability of these fluids to escape from magma. We know that a primary control of the movement of fluids in magma is its permeability. Permeability is defined as the ease at which fluids can move through a medium and, is controlled by the physical properties of the magma (chemical composition, crystal content and porosity) and, the environmental conditions and processes occurring in the conduit that modify these properties. Two models of fluid movement are generally considered, one related to the fracture of magma and a second related to the formation of bubble chains. However, these models are not quantified or verified.During times of volcanic unrest, internal conduit processes produce geophysical signals, such as seismicity. Understanding the relationship between geophysical signals and the processes that generate them can help us to produce more robust eruption forecasts. A certain type of seismicity that we frequently register at volcanoes are proposed to be generated by the movement of fluids. These are called low frequency (LF) seismic events. However, there are multiple models for the source processes of LF seismicity, hindering our capacity to interpret them.As we cannot visit a volcanic conduit, we use laboratory experiments with natural rock samples to simulate what is happening inside a volcano and to produce analogue geophysical data (acoustic emission, AE, are the laboratory analogue of natural seismicity) to better interpret these processes. However, the environmental conditions in volcanic conduits are extreme and unfortunately the majority of published experimental studies do not fully replicate these conditions (temperature, pressure, fluids and stress) simultaneously. This is due to the difficulties of high-temperature, high-pressure experiments and the limitations of current equipment designs. Therefore, we still do not understand how fluids move through magma or what specific processes generate types of LF seismicity.Using unique, high-temperature, triaxial deformation experiments; the first comprehensive study of the permeability of natural magma samples, under simulated volcanic conditions of temperature, pressure and stress will be performed. Within these experiments, deformation processes common to volcanic conduits and hypothesised to have significant effect on permeability will be replicated, using an applied axial load. AE will be monitored throughout all experiments using a newly designed sensor array that will allow high spatial-resolution AE measurements to be made at magmatic temperatures. Understanding how fluids move in magma and, the generation of laboratory analogue geophysical data will open a window into the volcanic system. Key processes that control the movement of fluids in magmas and the geophysical signals produced will be identified. These unique experimental data will link the processes dictating permeability evolution to the explosive potential of a volcanic system and more accurately define the source processes that generate LF seismicity, underpinning a new generation of models to forecast the state of the volcanic systems and potential future eruptive activity.
火山喷发是最强大、最壮观的自然现象之一,即使是相对较小的喷发也会在全球范围内产生重大的社会、环境和经济影响。世界上约有9%的人口直接受到火山爆发的影响,因此火山学的主要目标是能够预测火山爆发的类型,以便脆弱的社区能够安全疏散。然而,在火山动荡时期,我们仍然不能肯定会发生什么类型的喷发,因此它可能有多危险。随着岩浆在火山内部上升,溶解在岩浆中的液体开始形成气泡。喷发的爆炸性主要由这些流体从岩浆中逸出的能力所控制。我们知道,控制岩浆中流体运动的主要因素是它的渗透性。渗透率被定义为流体可以通过介质移动的容易程度,并且由岩浆的物理性质(化学成分、晶体含量和孔隙度)以及改变这些性质的管道中发生的环境条件和过程控制。一般认为流体运动有两种模式,一种与岩浆破裂有关,另一种与气泡链的形成有关。然而,这些模型没有量化或验证。在火山动荡时期,内部管道过程产生地球物理信号,如地震活动。了解地球物理信号和产生它们的过程之间的关系可以帮助我们做出更可靠的火山爆发预测。我们经常在火山上记录的某种类型的地震活动被认为是由流体运动产生的。这些被称为低频(LF)地震事件。然而,低频地震活动的震源过程有多种模型,这阻碍了我们解释它们的能力。由于我们无法访问火山管道,我们使用天然岩石样本进行实验室实验,以模拟火山内部发生的情况,并产生模拟地球物理数据(声发射,AE,是天然地震活动的实验室模拟),以更好地解释这些过程。然而,火山管道的环境条件是极端的,不幸的是,大多数已发表的实验研究并没有完全复制这些条件(温度,压力,流体和应力)同时。这是由于高温、高压实验的困难和现有设备设计的局限性。因此,我们仍然不了解流体如何在岩浆中移动,或者是什么特定的过程产生了LF地震活动类型。利用独特的高温三轴变形实验,将在模拟火山的温度、压力和应力条件下,首次对天然岩浆样品的渗透性进行全面研究。在这些实验中,变形过程常见的火山管道和假设有显着的影响渗透率将被复制,使用施加的轴向载荷。AE将在所有实验中使用新设计的传感器阵列进行监测,该传感器阵列将允许在岩浆温度下进行高空间分辨率AE测量。了解流体如何在岩浆中移动,以及实验室模拟地球物理数据的生成将打开一扇通往火山系统的窗户。将确定控制岩浆中流体运动的关键过程和产生的地球物理信号。这些独特的实验数据将把决定渗透率演变的过程与火山系统的爆炸潜力联系起来,并更准确地定义产生LF地震活动的源过程,支持新一代模型,以预测火山系统的状态和未来潜在的喷发活动。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Twenty years of explosive-effusive activity at El Reventador volcano (Ecuador) recorded in its geomorphology
雷文塔多火山(厄瓜多尔)地貌记录了二十年来的喷发活动
  • DOI:
    10.3389/feart.2023.1202285
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Vallejo S
  • 通讯作者:
    Vallejo S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Helen Gaunt其他文献

Helen Gaunt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

西秦岭晚中生代钾质火山岩的成因及其印度-欧亚大陆碰撞前、后岩石圈变化的火山岩约束
  • 批准号:
    40572046
  • 批准年份:
    2005
  • 资助金额:
    39.0 万元
  • 项目类别:
    面上项目

相似海外基金

VOLCANIC CLASSIC: VOLCANIC eruptions and CLimAte response - Stratospheric Sulfate isotopes in Ice Cores, data assimilation, and climate sensitivity
火山经典:火山喷发和气候响应 - 冰芯中的平流层硫酸盐同位素、数据同化和气候敏感性
  • 批准号:
    EP/Z000645/1
  • 财政年份:
    2024
  • 资助金额:
    $ 91.91万
  • 项目类别:
    Research Grant
A New Scientific Framework of Volcanic Eruptions based on Apatite U-Th Disequilibrium System
基于磷灰石U-Th不平衡体系的火山喷发新科学框架
  • 批准号:
    23H01265
  • 财政年份:
    2023
  • 资助金额:
    $ 91.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of geochronological techniques to assess the danger of Quaternary volcanic eruptions
开发地质年代学技术来评估第四纪火山喷发的危险
  • 批准号:
    22KF0152
  • 财政年份:
    2023
  • 资助金额:
    $ 91.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Novel tools for dating explosive volcanic eruptions in the critical window
用于确定关键窗口内火山喷发时间的新工具
  • 批准号:
    DP230103085
  • 财政年份:
    2023
  • 资助金额:
    $ 91.91万
  • 项目类别:
    Discovery Projects
Collaborative Research: Diagnosing Global Climatic Responses to Large Volcanic Eruptions in Climate Reconstructions and Model Simulations
合作研究:在气候重建和模型模拟中诊断全球气候对大型火山喷发的响应
  • 批准号:
    2303352
  • 财政年份:
    2023
  • 资助金额:
    $ 91.91万
  • 项目类别:
    Standard Grant
EAR-PF: Measuring the Effects of Large Volcanic Eruptions on a Shallow Magma Reservoir using Microanalytical Techniques
EAR-PF:使用微分析技术测量大型火山喷发对浅层岩浆库的影响
  • 批准号:
    2204477
  • 财政年份:
    2023
  • 资助金额:
    $ 91.91万
  • 项目类别:
    Fellowship Award
Dynamics of multiphase plumes in sheared stratified crossflows: implications for managing the environmental impacts of volcanic eruptions (Ref: 4659)
剪切分层横流中多相羽流的动力学:对管理火山喷发环境影响的影响(参考文献:4659)
  • 批准号:
    2859346
  • 财政年份:
    2023
  • 资助金额:
    $ 91.91万
  • 项目类别:
    Studentship
Collaborative Research: Diagnosing Global Climatic Responses to Large Volcanic Eruptions in Climate Reconstructions and Model Simulations
合作研究:在气候重建和模型模拟中诊断全球气候对大型火山喷发的响应
  • 批准号:
    2303353
  • 财政年份:
    2023
  • 资助金额:
    $ 91.91万
  • 项目类别:
    Standard Grant
Computational modeling of volcanic eruptions and their seismic and infrasound radiation
火山喷发及其地震和次声辐射的计算模型
  • 批准号:
    2231849
  • 财政年份:
    2023
  • 资助金额:
    $ 91.91万
  • 项目类别:
    Standard Grant
Observation of atmosphere and volcanic gas eruptions on Jupiter's moons
观测木星卫星上的大气和火山气体喷发
  • 批准号:
    22KJ1509
  • 财政年份:
    2023
  • 资助金额:
    $ 91.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了