Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
基本信息
- 批准号:NE/W00948X/1
- 负责人:
- 金额:$ 119.49万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Green-energy transition technologies such as carbon storage, geothermal energy extraction, hydrogen storage, and compressed-air energy storage, all rely to some extent on subsurface injection or extraction of fluids. This process of injection and retrieval is well known to industry, as it has been performed all over the world, for decades.Fluid injection processes create mechanical disturbances in the subsurface, leading to local or regional displacements that may result in tremors. In the vast majority of cases, these tremors are imperceptible to humans, and have no effect on engineered structures. Nonetheless, in recent years, low magnitude induced seismic events have had profound consequences on the social acceptance of subsurface technologies, including the halting of natural gas production at the Groningen field in the Netherlands, halting of carbon storage experiments in Spain, halting of geothermal energy projects in Switzerland, and the moratorium on UK onshore gas extraction. In light of the seismic events of increasing severity recently measured during geothermal mining in Cornwall, the need to develop a rigorous fundamental understanding of induced seismicity is clear, significant, and timely, in order to prevent induced seismicity from jeopardising the ability to effectively develop the green energy transition.Most mathematical models that are used to predict and understand tremors rely on past observations of natural tremors and earthquakes. However, fluid-driven displacement in the subsurface is a controlled event, in which the properties of the injected fluids and the conditions of injection can be adjusted and optimised to avoid large events from happening. This project aims to develop a fundamental understanding of how the conditions of subsurface rocks, and the way in which fluid is injected in these rocks, affect the amount of seismicity that may be produced.We will analyse in detail the behaviour of fluid-driven seismic events, and will develop a physically realistic model based on computer simulations, novel laboratory experiments, and comprehensive field observations. Our model will characterise the relationships between specific subsurface properties, the nature of the fluid injection, and the severity of the seismic event. These findings will be linked to hazard analysis, to identify the conditions under which processes such as carbon storage, deep geothermal energy extraction, and compressed-air energy storage, are more or less likely to create tremors. We will also investigate how to best share our scientific findings with regulators and the general public, so as to maximise the impact of this work.This project will lead to an improved understanding of the processes and conditions that underpin the severity of induced seismic events, with a vision of developing strategies that will improve our ability to prevent and control these events. This project will also provide the scientific basis to improve precision and cost-effectiveness of scientific instruments that are used to monitor the subsurface, so that we can identify tremors as they occur, and better interpret what is causing them as we observe them.In the short term, we need to develop these models so that regulators and decision-makers can develop policies based on scientific evidence, using a variety of analysis tools that inter-validate each other, thereby ensuring that their predictions are robust. This is an important step in supporting the ability of developing a resilient, diversified, sustainable, and environmentally responsible energy security strategy for the UK.In the long term, by creating confidence in the understanding of these subsurface events, and demonstrating evidence of our ability to control them, we will lead the UK into an era where humans understand why certain seismic events have occurred, allowing them to potentially develop mechanisms to forecast their occurrence, and reduce their severity.
绿色能源转换技术,如储碳、地热能提取、储氢、压缩空气储能等,都在一定程度上依赖于地下注入或提取流体。这种注入和回收的过程为工业界所熟知,因为它已经在世界各地进行了几十年。流体注入过程会在地下产生机械扰动,导致局部或区域位移,从而可能导致地震。在绝大多数情况下,这些震动对人类来说是难以察觉的,对工程结构没有影响。尽管如此,近年来,低震级诱发的地震事件对地下技术的社会接受程度产生了深远的影响,包括荷兰格罗宁根气田的天然气生产停止,西班牙碳储存实验停止,瑞士地热能源项目停止,英国陆上天然气开采暂停。鉴于最近在康沃尔地热开采期间测量到的日益严重的地震事件,为了防止诱发地震活动危及有效发展绿色能源转型的能力,对诱发地震活动进行严格的基本理解的必要性是明确的、重要的和及时的。大多数用于预测和理解地震的数学模型依赖于过去对自然地震和地震的观测。然而,地下流体驱油是一个可控的事件,注入流体的性质和注入条件可以调整和优化,以避免发生大事件。该项目旨在对地下岩石的条件以及流体注入这些岩石的方式如何影响可能产生的地震活动性有一个基本的了解。我们将详细分析流体驱动地震事件的行为,并将基于计算机模拟、新颖的实验室实验和全面的现场观测,开发一个物理上真实的模型。我们的模型将描述特定的地下性质、流体注入的性质和地震事件的严重程度之间的关系。这些发现将与危害分析联系起来,以确定碳储存、深层地热能源开采和压缩空气能源储存等过程或多或少可能产生地震的条件。我们还将研究如何最好地与监管机构和公众分享我们的科学发现,以最大限度地发挥这项工作的影响。该项目将使我们更好地了解诱发地震事件严重性的过程和条件,并制定战略,提高我们预防和控制这些事件的能力。该项目还将为提高用于监测地下地震的科学仪器的精度和成本效益提供科学依据,这样我们就可以在地震发生时识别地震,并在观察地震时更好地解释引起地震的原因。在短期内,我们需要开发这些模型,以便监管机构和决策者能够根据科学证据制定政策,使用各种相互验证的分析工具,从而确保他们的预测是稳健的。这是支持英国制定有弹性、多样化、可持续和对环境负责的能源安全战略的重要一步。从长远来看,通过建立对这些地下事件的理解的信心,并证明我们有能力控制它们,我们将带领英国进入一个人类理解某些地震事件发生的原因的时代,使他们能够开发预测其发生的机制,并降低其严重程度。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Frictional Response of Clay-rich Sandstone to Pore-Pressure Oscillation Throughout Interseismic Periods
震间期富粘土砂岩对孔隙压力振荡的摩擦响应
- DOI:10.5194/egusphere-egu24-18100
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Bigaroni N
- 通讯作者:Bigaroni N
Assessing the variability in hydraulic fracturing-induced seismicity occurrence between North American shale plays
评估北美页岩区之间水力压裂诱发的地震活动的变化
- DOI:10.1016/j.tecto.2023.229898
- 发表时间:2023
- 期刊:
- 影响因子:2.9
- 作者:Verdon J
- 通讯作者:Verdon J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adriana Paluszny Rodriguez其他文献
Adriana Paluszny Rodriguez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adriana Paluszny Rodriguez', 18)}}的其他基金
Modelling hyperbolic and elliptic elasticity with discontinuous coefficients using an error driven adaptive isogeometric basis
使用误差驱动的自适应等几何基础对具有不连续系数的双曲和椭圆弹性进行建模
- 批准号:
EP/W023202/1 - 财政年份:2022
- 资助金额:
$ 119.49万 - 项目类别:
Research Grant
相似国自然基金
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Three problems in fluid mechanics through the lens of sparseness of the regions of intense fluid activity
从流体活动强烈区域的稀疏性角度来看流体力学中的三个问题
- 批准号:
2307657 - 财政年份:2023
- 资助金额:
$ 119.49万 - 项目类别:
Standard Grant
Conference: Systems of PDEs in Fluid Mechanics and Atmospheric Sciences
会议:流体力学和大气科学中的偏微分方程系统
- 批准号:
2309801 - 财政年份:2023
- 资助金额:
$ 119.49万 - 项目类别:
Standard Grant
Coherent Structure, Chaos, and Turbulence in Fluid Mechanics
流体力学中的相干结构、混沌和湍流
- 批准号:
2348453 - 财政年份:2023
- 资助金额:
$ 119.49万 - 项目类别:
Standard Grant
Computer-assisted Proofs in Fluid Mechanics and Applications
流体力学及其应用中的计算机辅助证明
- 批准号:
2247537 - 财政年份:2023
- 资助金额:
$ 119.49万 - 项目类别:
Standard Grant
PRIME: Unresolved fluid mechanics at liquid/gas interfaces for PRIMary brEakup of atomizing sprays
PRIME:雾化喷雾初次破裂的液体/气体界面处未解决的流体力学
- 批准号:
EP/Y028848/1 - 财政年份:2023
- 资助金额:
$ 119.49万 - 项目类别:
Research Grant
Advanced Laser Diagnostics Investigating the Fluid Mechanics of Primary Breakup
先进激光诊断研究初级破裂的流体力学
- 批准号:
2879517 - 财政年份:2023
- 资助金额:
$ 119.49万 - 项目类别:
Studentship
Elucidation of auditory machanism based on rigorous solution of the cochlear fluid mechanics model and its application to auditory medicine
基于耳蜗流体力学模型严密求解的听觉机制阐明及其在听觉医学中的应用
- 批准号:
23H03772 - 财政年份:2023
- 资助金额:
$ 119.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
REU Site: Fluid Mechanics with Analysis using Computations and Experiments (FM-ACE)
REU 网站:使用计算和实验进行分析的流体力学 (FM-ACE)
- 批准号:
2244313 - 财政年份:2023
- 资助金额:
$ 119.49万 - 项目类别:
Standard Grant
Fluid mechanics approach to tissue perfusion quantification in MRI
MRI 中组织灌注定量的流体力学方法
- 批准号:
10720485 - 财政年份:2023
- 资助金额:
$ 119.49万 - 项目类别:
Computational and machine learning methods for model reduction, uncertainty propagation, and parameter identification in fluid and solid mechanics
流体和固体力学中模型简化、不确定性传播和参数识别的计算和机器学习方法
- 批准号:
RGPIN-2021-02693 - 财政年份:2022
- 资助金额:
$ 119.49万 - 项目类别:
Discovery Grants Program - Individual