Fluid mechanics approach to tissue perfusion quantification in MRI
MRI 中组织灌注定量的流体力学方法
基本信息
- 批准号:10720485
- 负责人:
- 金额:$ 66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnatomyAngiographyArteriesBiophysicsBlood VesselsBlood flowBrainBreastClinical TrialsCollectionComplexComputing MethodologiesDataData SetDefectEquationFeasibility StudiesFingerprintGoalsImageIschemic StrokeKidneyKidney TransplantationKnowledgeLawsLiquid substanceMagnetic Resonance ImagingMalignant NeoplasmsMammary NeoplasmsMapsMechanicsMedical ImagingMethodsOrganOutcomeOutputPatientsPerfusionPermeabilityPositron-Emission TomographyPredispositionProcessPropertyQuantitative MicroscopyResearch Project GrantsResolutionSpecific qualifier valueStrokeStructureTechnologyTimeTissuesTracerTrainingarterial spin labelingbreast imagingclinical practicecontrast enhanceddeep learningdeep neural networkimprovedinterestkidney imaginglarge datasetsmillisecondpreservationsimulationtumor
项目摘要
PROJECT SUMMARY/ABSTRACT
Our overall goal is to develop a fluid mechanics approach to studying tracer transport through tissue for
perfusion quantification in magnetic resonance imaging (MRI), which is termed as quantitative transport
mapping (QTM). Current/traditional perfusion quantification in MRI and medical imaging in general is based on
Kety's method that assumes the same arterial input globally into all voxels in an imaging volume. This global
arterial input function (AIF) transgresses the local mass conservation at a voxel and requires the user to
choose an arterial region of interest (ROI) with the consequent perfusion value highly dependent on the ROI
choice, which is known as the AIF problem.
been
The AIF problem in Kety's method for perfusion quantification has
a major unmet challenge impeding perfusion quantification in MRI.The tracer concentration at the artery
entering the voxel is needed to address the AIF problem and can be estimated by following tracer transport
through the vascular space according to fluid mechanics, which is the proposed QTM. Accordingly, we propose
to develop QTM technology for MRI perfusion quantification, capable of processing all 3 major types of images:
dynamic susceptibility contrast (DSC) as in imaging ischemic stroke, multidelay arterial spin labeling (ASL) as
in imaging kidney transplant, and dynamic contrast enhanced (DCE) as in imaging breast tumor. We plan to
achieve this objective through the following three specific aims:
Aim
comprising
Aim
Simverse
tracer
Aim
processing
In
perfusion
1 Develop vascular Simverses For the brain, kidney and breast, we will develop vascular Simverse
datasets of vasculature, flow and permeability distribution, and tracer propagation.
2 Develop compartmentalized quantitative transport mapping. The datasets in the vascular
of an organ are used to train DNNs for QTM determination of vasculature, flow and permeability, and
propagation from tracer spacetime images.
3 Evaluate quantitative perfusion mapping in patients. The eveloped QTM is evaluated for
three major perfusion MRI acquisitions: DSC, multidelay ASL and DCE.
summary, the successful outcome of this project will establish the fluid mechanics based QTM for
quantification
.
d
as a more effective alternative to Kety's method with preservation of local mass
conservation and without the AIF problem.
项目总结/摘要
我们的总体目标是开发一种流体力学方法来研究示踪剂通过组织的运输,
磁共振成像(MRI)中的灌注定量,称为定量转运
映射(QTM)。MRI和医学成像中的当前/传统灌注量化通常基于
凯蒂的方法,假设相同的动脉输入到成像体积中的所有体素中。这一全球
动脉输入功能(AIF)违反体素的局部质量守恒,并要求用户
选择动脉感兴趣区域(ROI),其结果灌注值高度依赖于ROI
这就是所谓的AIF问题。
被
凯蒂的灌注定量方法中的AIF问题
这是阻碍MRI灌注定量的一个主要挑战。
需要输入体素来解决AIF问题,并且可以通过跟踪示踪剂传输来估计
根据流体力学通过血管空间,这是所提出的QTM。因此,我们建议
开发用于MRI灌注定量的QTM技术,能够处理所有3种主要类型的图像:
动态磁敏感对比(DSC)作为缺血性卒中的成像,多延迟动脉自旋标记(ASL)作为
在成像肾移植,和动态对比增强(DCE)成像乳腺肿瘤。我们计划
通过以下三个具体目标实现这一目标:
目的
包括
目的
西姆弗斯
示踪剂
目的
处理
在
灌注
1发展血管类Simverse对于大脑、肾脏和乳房,我们将发展血管类Simverse
脉管系统、流量和渗透率分布以及示踪剂传播的数据集。
2绘制分区定量运输图。血管中的数据集
用于训练DNN以用于脉管系统、流动和渗透性的QTM确定,以及
追踪时空图像的传播
3评价患者的定量灌注标测。对开发的QTM进行评价,
三种主要的灌注MRI采集:DSC、多延迟ASL和DCE。
总之,该项目的成功结果将建立基于流体力学的QTM,
定量
.
D
作为保留局部质量的凯蒂方法的更有效的替代方案
不存在AIF问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Wang其他文献
<b><span style="font-family:'Times New Roman','serif';font-size:18pt;">Detecting Chaos from Time Series of</span><span style="font-family:宋体;font-size:18pt;"> </span><span style=&quo
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:2.7
- 作者:
Xin Su;Yi Wang;Shengseng Duan;Junhai Ma; - 通讯作者:
bspan style=font-family:Times New Roman,serif;font-size:18pt;Detecting Chaos from Time Series of/spanspan style=font-family:宋体;font-size:18pt; /spanspan style=
从时间序列中检测混沌
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:2.7
- 作者:
Xin Su;Yi Wang;Shengseng Duan;Junhai Ma - 通讯作者:
Junhai Ma
Yi Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Wang', 18)}}的其他基金
Key gut microbes shape intestinal epithelial lineage development, differentiation and metabolic function
关键肠道微生物塑造肠上皮谱系的发育、分化和代谢功能
- 批准号:
10572633 - 财政年份:2023
- 资助金额:
$ 66万 - 项目类别:
7T Magnetic Resonance Imaging System for Basic, Translational and Clinical Research
用于基础、转化和临床研究的 7T 磁共振成像系统
- 批准号:
9940405 - 财政年份:2021
- 资助金额:
$ 66万 - 项目类别:
Concurrent multiphoton microscopy and magnetic resonance imaging (COMPMRI)
并行多光子显微镜和磁共振成像 (COMPMRI)
- 批准号:
9360610 - 财政年份:2016
- 资助金额:
$ 66万 - 项目类别:
Multiple Sclerosis Lesion Magnetic Susceptibility Activity
多发性硬化症病变磁化率活性
- 批准号:
9922392 - 财政年份:2015
- 资助金额:
$ 66万 - 项目类别:
International Workshop on MRI Phase Contrast and Quantitative Susceptibility Mapp
MRI 相差和定量磁化率图国际研讨会
- 批准号:
8461038 - 财政年份:2012
- 资助金额:
$ 66万 - 项目类别:
MRI method for quantitatively mapping cerebral microbleeds
定量绘制脑微出血图的 MRI 方法
- 批准号:
8431454 - 财政年份:2011
- 资助金额:
$ 66万 - 项目类别:
MRI method for quantitatively mapping cerebral microbleeds
定量绘制脑微出血图的 MRI 方法
- 批准号:
8116244 - 财政年份:2011
- 资助金额:
$ 66万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 66万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 66万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 66万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 66万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 66万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 66万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 66万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 66万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 66万 - 项目类别:
Studentship