CYCLOPS: Carbon Cycling Linkages of Permafrost Systems
CYCLOPS:永久冻土系统的碳循环联系
基本信息
- 批准号:NE/K00025X/1
- 负责人:
- 金额:$ 34.57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Terrestrial ecosystems currently absorb one quarter of the carbon dioxide released by fossil fuel burning into the atmosphere, and thus reduce the rate of climate change. As conditions become more favourable for plant growth, most models predict that high latitudes will take up more carbon during the 21st century. However, vast stores of carbon are frozen in boreal and arctic permafrost, and warming may result in some of this carbon being released to the atmosphere. The recent inclusion of permafrost thaw in large-scale model simulations has suggested that the permafrost feedback is potentially so significant that it could reduce substantially the predicted global net uptake of carbon by terrestrial ecosystems during the 21st century, with major implications for the rate of climate change.Large uncertainties remain in predicting rates of permafrost thaw and in determining the impacts of thaw in contrasting ecosystems, with many of the key processes missing from carbon-climate models. Firstly, the role that different plant communities play in insulating soils and protecting permafrost is poorly quantified, with key groups such as mosses absent in most models. In addition, fire disturbance can substantially accelerate permafrost thaw, and hence the ability of permafrost-protecting plant communities to recover from fire may play a key role in determining permafrost resilience. Secondly, different ecosystems may respond differently to thaw with contrasting effects on release of greenhouse gasses. In free-draining ecosystems, thaw may result in the net release of carbon due to increased decomposition of previously frozen organic matter. On the other hand, when thawing takes place in peatlands, soil subsidence can effectively raise the water table, which could result in carbon accumulation. However, this potential negative feedback may be offset by enhanced release of the more powerful greenhouse gas, methane. Importantly, the full range of feedbacks to permafrost thaw in these contrasting ecosystems is not currently reflected in process-based models. To address these issues, we will undertake directed fieldwork campaigns to determine (1) the role that different plant communities play in protecting permafrost within different soil types, and in unburned and fire-disturbed ecosystems, and (2) the impacts of permafrost thaw on fluxes of carbon dioxide and methane in free-draining versus peatland systems. Through links to Canadian partners, data will be collected from a range of field sites where permafrost monitoring is ongoing, including: (i) two contrasting boreal peatlands differing in permafrost extent, and where there is permafrost degradation; (ii) burnt and unburned sites within three important forest types in boreal Canada. Data will be provided from burnt and unburned moist acidic tundra within the continuous permafrost zone in Alaska by our US partners. The spatially variable vegetation recovery at the fire sites allows relationships between vegetation and permafrost to be tested in detail, while comparisons between the tundra, forest and peatland sites provide insights into the impacts of permafrost thaw in contrasting ecosystems.Critically, these data will be used to develop, parameterise and evaluate a detailed process-based model of vegetation-soil-permafrost interactions. The in-depth representation of vegetation-permafrost linkages will improve predictions of rates of permafrost thaw. The model will be the first to simulate the full range of biogeochemical feedbacks (methane and carbon dioxide) in free-draining versus wetland ecosystems. Furthermore, through links with Met Office scientists, our model will be coupled to the Joint UK Land Environment Simulator (JULES), allowing regional simulations to be run, coupled to a climate model. Ultimately, our project will improve predictions of both the rates and consequences of permafrost thaw, and help determine the potential impacts on 21st century climate change.
目前,陆地生态系统吸收了化石燃料燃烧释放到大气中的二氧化碳的四分之一,从而减缓了气候变化的速度。随着条件变得更加有利于植物生长,大多数模型预测高纬度地区在21世纪将吸收更多的碳。然而,大量的碳被冻结在北方和北极的永久冻土中,气候变暖可能会导致其中一些碳被释放到大气中。最近将永久冻土融化纳入大尺度模式模拟表明,永久冻土反馈可能非常重要,以至于它可能大幅降低21世纪陆地生态系统预测的全球净碳吸收量,对气候变化速度产生重大影响。在预测永久冻土融化速率和确定不同生态系统中融化的影响方面仍存在很大的不确定性,碳气候模型中缺少许多关键过程。首先,不同植物群落在隔离土壤和保护冻土中的作用量化不足,在大多数模型中缺少苔藓等关键类群。此外,火灾干扰可以大大加速永久冻土融化,因此永久冻土保护植物群落从火灾中恢复的能力可能在决定永久冻土恢复力方面发挥关键作用。其次,不同的生态系统对解冻的反应不同,对温室气体释放的影响也不同。在自由排水的生态系统中,由于先前冻结的有机物分解增加,解冻可能导致碳的净释放。另一方面,当泥炭地发生融化时,土壤沉降可以有效地提高地下水位,从而导致碳积累。然而,这种潜在的负反馈可能会被更强大的温室气体甲烷的增加释放所抵消。重要的是,在这些不同的生态系统中,对永久冻土融化的全面反馈目前没有反映在基于过程的模型中。为了解决这些问题,我们将开展有针对性的实地调查活动,以确定(1)不同植物群落在不同土壤类型、未燃烧和火灾干扰的生态系统中对永久冻土的保护作用,以及(2)永久冻土融化对自由排水系统和泥炭地系统中二氧化碳和甲烷通量的影响。通过与加拿大合作伙伴的联系,将从正在进行永久冻土监测的一系列实地地点收集数据,包括:(i)两个不同的北方泥炭地,其永久冻土范围不同,以及永久冻土退化的地方;(ii)加拿大北部三种重要森林类型内的烧毁和未烧毁地点。我们的美国合作伙伴将从阿拉斯加连续永久冻土带内燃烧和未燃烧的潮湿酸性冻土带提供数据。火灾地点植被恢复的空间变化使植被和永久冻土之间的关系得到详细测试,而冻土带、森林和泥炭地地点之间的比较提供了对不同生态系统中永久冻土融化影响的见解。关键的是,这些数据将用于开发、参数化和评估一个详细的基于过程的植被-土壤-永久冻土相互作用模型。植被-永久冻土联系的深入表示将改进对永久冻土融化速率的预测。该模型将是第一个全面模拟自由排水与湿地生态系统中生物地球化学反馈(甲烷和二氧化碳)的模型。此外,通过与英国气象局科学家的联系,我们的模型将与联合英国陆地环境模拟器(JULES)相结合,使区域模拟能够运行,并与气候模型相结合。最终,我们的项目将改进对永久冻土融化速度和后果的预测,并帮助确定对21世纪气候变化的潜在影响。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Boreal permafrost thaw amplified by fire disturbance and precipitation increases
北方永久冻土融化因火灾干扰和降水增加而加剧
- DOI:10.1088/1748-9326/abbeb8
- 发表时间:2020
- 期刊:
- 影响因子:6.7
- 作者:Williams M
- 通讯作者:Williams M
Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems
- DOI:10.1088/1748-9326/abc994
- 发表时间:2020-11
- 期刊:
- 影响因子:6.7
- 作者:Heather Kropp;M. Loranty;S. Natali;A. Kholodov;A. Rocha;I. Myers-Smith;Benjamin W. Abbott;J. Abermann;E. Blanc‐Betes;D. Blok;G. Blume‐Werry;J. Boike;A. Breen;Sean M. P. Cahoon;C. Christiansen;T. Douglas;H. Epstein;G. Frost;M. Goeckede;T. Høye;S. Mamet;J. O’Donnell;D. Olefeldt;G. Phoenix;V. Salmon;A. Sannel;Sharon L. Smith;O. Sonnentag;L. Vaughn;M. Williams;B. Elberling;L. Gough;J. Hjort;P. Lafleur;E. Euskirchen;M. Heijmans;E. Humphreys;H. Iwata;B. Jones;T. Jorgenson;I. Grünberg;Yongwon Kim;J. Laundre;M. Mauritz;A. Michelsen;G. Schaepman‐Strub;K. Tape;M. Ueyama;B. Lee;K. Langley;M. Lund
- 通讯作者:Heather Kropp;M. Loranty;S. Natali;A. Kholodov;A. Rocha;I. Myers-Smith;Benjamin W. Abbott;J. Abermann;E. Blanc‐Betes;D. Blok;G. Blume‐Werry;J. Boike;A. Breen;Sean M. P. Cahoon;C. Christiansen;T. Douglas;H. Epstein;G. Frost;M. Goeckede;T. Høye;S. Mamet;J. O’Donnell;D. Olefeldt;G. Phoenix;V. Salmon;A. Sannel;Sharon L. Smith;O. Sonnentag;L. Vaughn;M. Williams;B. Elberling;L. Gough;J. Hjort;P. Lafleur;E. Euskirchen;M. Heijmans;E. Humphreys;H. Iwata;B. Jones;T. Jorgenson;I. Grünberg;Yongwon Kim;J. Laundre;M. Mauritz;A. Michelsen;G. Schaepman‐Strub;K. Tape;M. Ueyama;B. Lee;K. Langley;M. Lund
Limited contribution of permafrost carbon to methane release from thawing peatlands
- DOI:10.1038/nclimate3328
- 发表时间:2017-06
- 期刊:
- 影响因子:30.7
- 作者:Mark D. A. Cooper;Cristian Estop‐Aragonés;J. P. Fisher;A. Thierry;M. Garnett;D. Charman;J. Murton
- 通讯作者:Mark D. A. Cooper;Cristian Estop‐Aragonés;J. P. Fisher;A. Thierry;M. Garnett;D. Charman;J. Murton
The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest.
- DOI:10.1111/gcb.13248
- 发表时间:2016-09
- 期刊:
- 影响因子:11.6
- 作者:Fisher JP;Estop-Aragonés C;Thierry A;Charman DJ;Wolfe SA;Hartley IP;Murton JB;Williams M;Phoenix GK
- 通讯作者:Phoenix GK
Upscaling CH4 Fluxes Using High-Resolution Imagery in Arctic Tundra Ecosystems
- DOI:10.3390/rs9121227
- 发表时间:2017-12-01
- 期刊:
- 影响因子:5
- 作者:Davidson, Scott J.;Santos, Maria J.;Zona, Donatella
- 通讯作者:Zona, Donatella
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gareth Phoenix其他文献
Gareth Phoenix的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gareth Phoenix', 18)}}的其他基金
Below Ground Control of Ecosystem Carbon Sequestration under Elevated CO2
二氧化碳浓度升高下生态系统碳封存的地下控制
- 批准号:
NE/X000273/1 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Research Grant
Phosphorus Limitation And ecosystem responses to Carbon dioxide Enrichment (PLACE)
磷限制和生态系统对二氧化碳富集的反应 (PLACE)
- 批准号:
NE/N010132/1 - 财政年份:2017
- 资助金额:
$ 34.57万 - 项目类别:
Research Grant
Resource partitioning for phosphorus (P) in a P-limited plant community: preference for different soil P sources among co-occurring species
有限磷植物群落中磷(P)的资源分配:共生物种对不同土壤磷源的偏好
- 批准号:
NE/H01179X/1 - 财政年份:2010
- 资助金额:
$ 34.57万 - 项目类别:
Research Grant
Is plant biodiversity loss and recovery in N polluted ecosystems regulated by phosphorus acquisition?
氮污染生态系统中植物生物多样性的丧失和恢复是否受到磷获取的调节?
- 批准号:
NE/D00036X/1 - 财政年份:2006
- 资助金额:
$ 34.57万 - 项目类别:
Research Grant
相似国自然基金
一碳代谢(One carbon metabolism)介导上调的 PD1/PDL1 驱动
肿瘤免疫逃逸
- 批准号:2024JJ9491
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
三维碳纳米材料(nano-carbon@ZSM-5)的制备及应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
理论预言的三维碳同素异构体T-carbon的制备及其物性的实验深入研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
绿色热量运动驱动的G-Carbon系统碳生产力发展研究
- 批准号:51976085
- 批准年份:2019
- 资助金额:56.0 万元
- 项目类别:面上项目
金属有机框架ZIF-67基Co@Carbon膜催化反应器设计、制备及其用于丙烷催化脱氢反应过程强化研究
- 批准号:21878100
- 批准年份:2018
- 资助金额:66.0 万元
- 项目类别:面上项目
乳腺癌发生发展过程中巨噬细胞glucose-serine-glycine-1-carbon代谢异常对肿瘤恶性进展的影响及其分子机制的研究
- 批准号:81730077
- 批准年份:2017
- 资助金额:290.0 万元
- 项目类别:重点项目
多级g-C3N4/Carbon复合物的合成及可见光光催化研究
- 批准号:51402147
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
黄、东海沉积物中碳黑(Black Carbon)的地球化学研究
- 批准号:40576039
- 批准年份:2005
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
OPP-PRF: Linking the Physical and Chemical Drivers of Carbon Cycling in Arctic Source-to-sink Systems
OPP-PRF:将北极源-汇系统中碳循环的物理和化学驱动因素联系起来
- 批准号:
2419995 - 财政年份:2024
- 资助金额:
$ 34.57万 - 项目类别:
Standard Grant
CAREER: Deconvolving organic substrates as the critical link between changes in organic matter and global biogeochemical sulfur, carbon, and oxygen cycling
职业:解卷积有机底物作为有机物变化与全球生物地球化学硫、碳和氧循环之间的关键联系
- 批准号:
2338040 - 财政年份:2024
- 资助金额:
$ 34.57万 - 项目类别:
Continuing Grant
Collaborative Research: The Role of Ice Sheet Instability in Marine Carbon and Nutrient Cycling in the Eurasian Arctic
合作研究:冰盖不稳定在欧亚北极海洋碳和养分循环中的作用
- 批准号:
2231936 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Standard Grant
Collaborative Research: The Role of Ice Sheet Instability in Marine Carbon and Nutrient Cycling in the Eurasian Arctic
合作研究:冰盖不稳定在欧亚北极海洋碳和养分循环中的作用
- 批准号:
2231935 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Cycling of dissolved organic matter in blue carbon ecosystems
合作研究:RUI:蓝碳生态系统中溶解有机物的循环
- 批准号:
2242994 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Standard Grant
OPP-PRF: Linking the Physical and Chemical Drivers of Carbon Cycling in Arctic Source-to-sink Systems
OPP-PRF:将北极源-汇系统中碳循环的物理和化学驱动因素联系起来
- 批准号:
2219107 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Cycling of dissolved organic matter in blue carbon ecosystems
合作研究:RUI:蓝碳生态系统中溶解有机物的循环
- 批准号:
2242995 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Standard Grant
Reactive transport with carbon and nitrogen cycling in soils for mixed aerobic and anaerobic root-zone
混合需氧和厌氧根区土壤中碳和氮循环的反应运输
- 批准号:
23H02326 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Carbon cycling and food web energy transfer in salinized headwater streams
盐化源头溪流中的碳循环和食物网能量转移
- 批准号:
2207923 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Continuing Grant
Role of fungal communities in carbon and nutrient cycling in forest soils under elevated atmospheric CO2 concentrations
大气二氧化碳浓度升高下森林土壤中真菌群落在碳和养分循环中的作用
- 批准号:
2874480 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Studentship