Understanding the eco-evolutionary drivers of emerging antifungal resistance

了解新兴抗真菌耐药性的生态进化驱动因素

基本信息

项目摘要

Microbes in their environment are exposed to changing conditions, which select for the most fit variants. This continual process of adaptation leads to the genetic composition of populations shifting in space and time as the fittest mutations track change. Unfortunately, when selection is imposed by chemicals that are designed to kill microbes, then those that are genetically resistant rise in frequency; this results in the global problem of antimicrobial resistance evolving in the environment.While emerging antimicrobial resistance is widely recognised in bacteria, the emergence of fungi that are resistant to antifungal chemicals is underappreciated yet is compromising our ability to grow blight-free crops and to treat serious human fungal diseases -therefore presenting a classic One Health dilemma. The core focus of our project is Aspergillus species, common environmental moulds to which all humans are exposed due to their ubiquitous presence in the air. Of note, A. fumigatus affects millions of susceptible individuals worldwide (including those with COVID-19) and is increasingly causing disease that is resistant to the frontline azole antifungal drugs that are used to treat it. Crucially, this is the same class of chemicals is used by farmers as fungicides, which is driving a surge in azole-resistant A. fumigatus as this mould comes under selection by these chemicals in its natural environment. However, we currently have very little understanding of the landscape-scale pathways that lead to fungicide chemical residues accumulating to the concentrations that select for, and amplify, resistance in moulds. We understand even less about the consequences combinations of different fungicides on the emergence of resistance, or how interactions with the wider microbial community that may hinder (or help) the emergence of resistance.Our project will examine the nested anthropogenic drivers - agricultural practices and green-waste recycling - with the aim of understanding how they create hotspots of evolution for antifungal resistant pathogens. The moulds on which we will focus are embedded in complex microbial ecosystems and we will determine the impact of scale from country-wide distributions of the fungus, through the ecological succession seen in fungicide-rich mesocosm environments, and down to individual model microcosm models. To do this, we will couple field and laboratory studies with Bayesian-based statistical methods that take into account both evolutionary and ecological complexity within a spatially-explicit framework. In doing so, we will be able to identify, understand and link the key factors that lead to hotspots of fungicide-resistant moulds forming. The variables that we measure - landuse, fungicides, fungal genetics and microbial community ecology - will be integrated into a systems network analysis that links the usage of fungicides in the environment to ecological settings where resistance is selected for. These 'Bayesian probabilistic networks' are a powerful tool which will allow us predict hotspots for fungal drug-resistance, as well as allowing us to model methods to mitigate against this risk by reducing fungicide-inputs into specific 'pinch-points' that we identify. Ultimately, by dissecting the extended (unintentional) consequence of fungicide use as these chemicals drive the evolution of fungal antimicrobial resistance, our project will address this problem within its greater 'One Health' context. Our approach is urgently needed to develop the knowledge-base that is needed to understand the current risk as well as to mitigate the selection-pressure driving future emergence of fungal antimicrobial resistance in the environment.
环境中的微生物暴露在不断变化的条件下,从而选择最适合的变体。这种持续的适应过程导致种群的遗传组成在空间和时间上发生变化,因为最适合的突变会跟踪变化。不幸的是,当选择是由旨在杀死微生物的化学物质强加的,那么那些具有遗传抗性的频率就会上升;这导致了环境中抗生素耐药性的全球性问题。虽然细菌中出现的抗生素耐药性被广泛认识,对抗真菌化学物质具有耐药性的真菌的出现被低估,但却损害了我们种植枯萎病的能力-免费作物和治疗严重的人类真菌疾病-因此提出了一个典型的一个健康困境。我们项目的核心重点是曲霉菌,这是一种常见的环境霉菌,由于它们在空气中无处不在,所有人类都暴露在其中。值得注意的是,A。烟曲霉影响着全球数百万易感人群(包括COVID-19患者),并且越来越多地导致对用于治疗它的一线唑类抗真菌药物产生耐药性的疾病。至关重要的是,这与农民使用的杀真菌剂是同一类化学品,这导致了耐唑类烟曲霉的激增。烟曲霉,因为这种霉菌在其自然环境中受到这些化学品的选择。然而,我们目前对导致杀真菌剂化学残留物积累到选择和放大霉菌抗性的浓度的微生物规模途径知之甚少。我们更不了解不同杀菌剂的组合对抗药性出现的影响,或者与更广泛的微生物群落的相互作用如何可能阻碍(或帮助)抗药性的出现。我们的项目将研究嵌套的人为驱动因素-农业实践和绿色废物回收-旨在了解它们如何为抗药性病原体创造进化热点。我们将关注的模具嵌入在复杂的微生物生态系统中,我们将确定真菌在全国范围内分布的规模的影响,通过在富含杀真菌剂的中生态环境中看到的生态演替,并下降到单个模型微观模型。要做到这一点,我们将耦合现场和实验室研究与贝叶斯为基础的统计方法,考虑到进化和生态的复杂性在一个空间明确的框架。在这样做的过程中,我们将能够识别,理解和链接导致抗真菌剂霉菌形成热点的关键因素。我们测量的变量-土地利用,杀真菌剂,真菌遗传学和微生物群落生态学-将被整合到一个系统网络分析中,该分析将环境中杀真菌剂的使用与选择抗性的生态环境联系起来。这些“贝叶斯概率网络”是一个强大的工具,它将使我们能够预测真菌耐药性的热点,并使我们能够通过将杀真菌剂输入减少到我们确定的特定“夹点”来建模方法以减轻这种风险。最终,通过剖析杀真菌剂使用的扩展(无意)后果,因为这些化学品推动真菌抗菌素耐药性的演变,我们的项目将在其更大的“一个健康”背景下解决这个问题。迫切需要我们的方法来开发了解当前风险所需的知识基础,并减轻推动环境中真菌抗菌素耐药性未来出现的选择压力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Konstantin Kanyuka其他文献

Konstantin Kanyuka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Konstantin Kanyuka', 18)}}的其他基金

Aerobiome based genomic surveillance of fungicide resistance to track the development and spread of AMR in plant pathogens and the wider environment
基于空气生物组的杀菌剂抗性基因组监测,以追踪植物病原体和更广泛环境中 AMR 的发展和传播
  • 批准号:
    MR/Y034023/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Research Grant
2021-BBSRC/NSF-BIO: Host Immunity as a Driver of Virulence Evolution in Cereal Rust Fungi
2021-BBSRC/NSF-BIO:宿主免疫是谷物锈菌毒力进化的驱动因素
  • 批准号:
    BB/W018403/1
  • 财政年份:
    2022
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Research Grant
An integrated genomics/genetics approach for development of mungbean varieties with improved disease resistance
开发抗病性更高的绿豆品种的综合基因组学/遗传学方法
  • 批准号:
    BB/R019827/1
  • 财政年份:
    2018
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Research Grant
Applications of Foxtail mosaic virus (FoMV) vector for protein overexpression and gene silencing in cereals and other commercial crops
狐尾花叶病毒 (FoMV) 载体在谷物和其他经济作物中蛋白质过表达和基因沉默的应用
  • 批准号:
    BB/R012393/1
  • 财政年份:
    2017
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Research Grant
Fungal effectors as activators of novel resistances in cereals
真菌效应子作为谷物新抗性的激活剂
  • 批准号:
    BB/J019518/1
  • 财政年份:
    2012
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Research Grant
International workshop on Virus-induced gene silencing in cereals
谷物病毒诱导基因沉默国际研讨会
  • 批准号:
    BB/I025077/1
  • 财政年份:
    2011
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Research Grant
Exploiting eIF4E-based and associated broad-spectrum recessive resistance to potyviruses in dicots and monocots
在双子叶植物和单子叶植物中利用基于 eIF4E 和相关的对马铃薯Y病毒的广谱隐性抗性
  • 批准号:
    BB/E007198/1
  • 财政年份:
    2007
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Research Grant

相似国自然基金

南亚热带常绿阔叶林生态系统对氮沉降的生物热力学响应
  • 批准号:
    31770487
  • 批准年份:
    2017
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
面向功能ECO的不等价逻辑抽取方法研究
  • 批准号:
    61204047
  • 批准年份:
    2012
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
南亚热带森林生态系统结构、功能与效率的自组织动态
  • 批准号:
    31170428
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
中外生态村(Eco-village)的比较研究与实践
  • 批准号:
    50678112
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
苜蓿属植物抗寒生理生态及抗寒评价研究
  • 批准号:
    30571319
  • 批准年份:
    2005
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目

相似海外基金

Eco-evolutionary dynamics of seasonally mobile systems
季节性移动系统的生态进化动力学
  • 批准号:
    NE/Y000684/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Research Grant
BoCP-Implementation: Eco-evolutionary dynamics of rewilding: Real-time genetic monitoring of large-mammal community reassembly
BoCP-实施:野化的生态进化动力学:大型哺乳动物群落重组的实时基因监测
  • 批准号:
    2225088
  • 财政年份:
    2023
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Continuing Grant
RAPID: Eco-evolutionary dynamics of host-parasite interactions in a novel environment
RAPID:新环境中宿主-寄生虫相互作用的生态进化动力学
  • 批准号:
    2323185
  • 财政年份:
    2023
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Standard Grant
Eco-evolutionary dynamics of parallel climate-driven range shifts in the wild
野外气候驱动范围变化的平行生态进化动力学
  • 批准号:
    EP/X023362/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Fellowship
How well can we predict future changes in biodiversity using machine learning? Experiments in an eco-evolutionary testbed.
我们如何利用机器学习来预测生物多样性的未来变化?
  • 批准号:
    2890191
  • 财政年份:
    2023
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Studentship
Developing and testing an eco-evolutionary theory for range limits
开发和测试范围限制的生态进化理论
  • 批准号:
    2230806
  • 财政年份:
    2023
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Standard Grant
Can eco-evolutionary theories explain outcomes of microbiome coalescence
生态进化理论能否解释微生物组合并的结果
  • 批准号:
    DP230101448
  • 财政年份:
    2023
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Discovery Projects
Eco-evolutionary dynamics of parasitism mediated through variance in host fitness
通过宿主适应性差异介导的寄生生态进化动力学
  • 批准号:
    2310874
  • 财政年份:
    2023
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Standard Grant
Collaborative Research: ORCC: Understanding Organismal Behavioral Responses to Climate Change to Forecast Eco-evolutionary Dynamics of Albatrosses Populations
合作研究:ORCC:了解生物体对气候变化的行为反应以预测信天翁种群的生态进化动态
  • 批准号:
    2222058
  • 财政年份:
    2023
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Standard Grant
Investigating the role of sexual conflict in parasitoid- host eco-evolutionary dynamics
研究性冲突在寄生生物-宿主生态进化动力学中的作用
  • 批准号:
    2883381
  • 财政年份:
    2023
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了