ArtiFISHal Intelligence: merging technology and ecology to understand infectious disease dynamics
ArtiFISHal Intelligence:融合技术和生态学以了解传染病动态
基本信息
- 批准号:NE/X01049X/1
- 负责人:
- 金额:$ 10.27万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Wildlife diseases play a role in species extinctions, spillover of pathogens to humans (zoonoses), and can threaten food security (e.g., wild fisheries). Systematic monitoring of infectious diseases in wildlife, however, is extremely sparse, exceptions in the UK include key zoonotic pathogens, e.g., avian influenza in birds and Mycobacterium bovis (bovine TB) in badgers, Meles meles. For the majority of wildlife, disease goes undetected, yet understanding where, when and why wildlife disease occurs is essential for safeguarding biodiversity, agricultural resources as well as animal and public health. Artificial Intelligence (AI), however, could offer a new tool by which to fill the knowledge gap. Many images are shared publicly on social media with no particular scientific intent, but those images can be a rich source of important ecological data. The presence of wildlife disease is one such example. Many diseases have detectable, visible symptoms, for example, skin lesions and ulcers. Images submitted to social media are numerous and are often taken across broad geographical ranges and time periods. Indeed, social media with its user network of >2 billion worldwide reflects the observed reality (in image format) of a quarter of the human population. Social media sites 'Flickr' and 'Facebook' have amassed an estimated 100 billion images alone, with over 100 million new images uploaded every day. To harness this huge potential for information we will collate a large database of images from social media and use computer vision, a form of artificial intelligence (AI) to detect disease within those images. We will use wild fish as our test bed because the angling community (an estimated 2.9 million anglers), have a strong culture of photographing their catches and posting them online, which provides high monitoring potential. Wild fisheries are an important group of species that represent a significant income generator, worth over £1billion annually in the UK alone in recreation and job creation. Poor fish health therefore represents an angling, economic and conservation threat. Our pilot work has shown that computer vision can identify symptoms of common diseases of fish from images with high efficacy. Because many images are taken with GPS-enabled devices we can extract time and date from those images, allowing us to gain insight into where and when hotspots of disease occur. Once we have data on where and when disease occurs, we can then assess why disease occurs. Understanding why disease occurs is essential to management. We will use statistical models to assess which factors underlie disease presence on fish (temperature, water flow, pollution), allowing us to facilitate better control of diseases. Ultimately this research approach could be widened to a range of diseases in different wildlife host species at a global level. Such data would provide important insight into infectious disease dynamics and potentially provide early warnings for zoonotic spillover potential to humans.
野生动物疾病在物种灭绝、病原体向人类蔓延(人畜共患病)方面发挥作用,并可能威胁粮食安全(例如,野生渔业)。然而,对野生动物中传染病的系统监测非常稀少,英国的例外包括关键的人畜共患病病原体,例如,鸟类中的禽流感和獾中的牛分枝杆菌(牛结核病),Meles meles。对于大多数野生动物来说,疾病未被发现,但了解野生动物疾病发生的地点,时间和原因对于保护生物多样性,农业资源以及动物和公共健康至关重要。然而,人工智能(AI)可以提供一种新的工具来填补知识空白。许多图像在社交媒体上公开分享,没有特别的科学意图,但这些图像可以成为重要生态数据的丰富来源。野生动物疾病的存在就是这样一个例子。许多疾病都有可检测的可见症状,例如皮肤损伤和溃疡。提交给社交媒体的图像数量众多,而且往往跨越广泛的地理范围和时间段。事实上,社交媒体在全球拥有超过20亿的用户网络,反映了四分之一人口的观察现实(以图像格式)。社交媒体网站“Flickr”和“Facebook”估计已经积累了1000亿张图片,每天上传超过1亿张新图片。为了利用这种巨大的信息潜力,我们将整理来自社交媒体的大型图像数据库,并使用计算机视觉,一种人工智能(AI)形式来检测这些图像中的疾病。我们将使用野生鱼类作为我们的测试平台,因为钓鱼社区(估计有290万垂钓者)有很强的拍摄渔获物并将其发布在网上的文化,这提供了很高的监测潜力。野生渔业是一组重要的物种,代表着一个重要的收入来源,仅在英国每年就有超过10亿英镑的娱乐和创造就业机会。因此,鱼类健康状况不佳对钓鱼、经济和保护构成威胁。我们的试点工作表明,计算机视觉可以高效地从图像中识别鱼类常见疾病的症状。由于许多图像都是使用GPS设备拍摄的,因此我们可以从这些图像中提取时间和日期,使我们能够深入了解疾病热点发生的位置和时间。一旦我们有了疾病发生的地点和时间的数据,我们就可以评估疾病发生的原因。了解疾病发生的原因对管理至关重要。我们将使用统计模型来评估哪些因素导致鱼类疾病的存在(温度,水流,污染),使我们能够更好地控制疾病。最终,这种研究方法可以扩大到全球范围内不同野生动物宿主物种的一系列疾病。这些数据将为深入了解传染病动态提供重要信息,并有可能为人畜共患病向人类蔓延的可能性提供早期预警。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AI-based discovery of habitats from museum collections
基于人工智能的博物馆藏品栖息地发现
- DOI:10.1016/j.tree.2024.01.006
- 发表时间:2024
- 期刊:
- 影响因子:16.8
- 作者:Jones C
- 通讯作者:Jones C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Perkins其他文献
Commuting involution graphs for $$\tilde{A}_{n}$$
- DOI:
10.1007/s00013-005-1485-9 - 发表时间:
2006-01-01 - 期刊:
- 影响因子:0.500
- 作者:
Sarah Perkins - 通讯作者:
Sarah Perkins
Unexpected landscape-scale contemporary gene flow and fine-scale genetic diversity in rural hedgehogs
- DOI:
10.1007/s10592-025-01676-4 - 发表时间:
2025-02-25 - 期刊:
- 影响因子:1.700
- 作者:
Hongli Yu;Lauren J. Moore;Axel Barlow;Louise K. Gentle;Deborah A. Dawson;Gavin J. Horsburgh;Lucy Knowles;Philip J. Baker;Adam Bates;Helen Hicks;Silviu Petrovan;Sarah Perkins;Richard W. Yarnell - 通讯作者:
Richard W. Yarnell
Sarah Perkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Perkins', 18)}}的其他基金
Geo-political borders and at-risk species' distributions and conservation
地缘政治边界和濒危物种的分布和保护
- 批准号:
NE/X006344/1 - 财政年份:2022
- 资助金额:
$ 10.27万 - 项目类别:
Research Grant
相似海外基金
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 10.27万 - 项目类别:
Continuing Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 10.27万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 10.27万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 10.27万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 10.27万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 10.27万 - 项目类别:
Standard Grant
CAREER: Evaluating Cooperative Intelligence in Connected Communities
职业:评估互联社区中的合作智能
- 批准号:
2339497 - 财政年份:2024
- 资助金额:
$ 10.27万 - 项目类别:
Continuing Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 10.27万 - 项目类别:
Discovery Projects
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
- 批准号:
DP240100506 - 财政年份:2024
- 资助金额:
$ 10.27万 - 项目类别:
Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 10.27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)